Deep Mining Generation of Lung Cancer Malignancy Models from Chest X-ray Images
Abstract
:1. Introduction
1.1. Background
1.2. Study Goals and Process Overview
1.3. Novelty and Major Contributions
2. Related Work
2.1. Automated Lung Cancer Diagnosis
2.2. Automated Diagnostic Scoring
3. Materials and Methods
3.1. Data Sourcing
3.2. Data Curation
Classification | Count | Extracted | Association |
---|---|---|---|
Atelectasis | 2210 | Y | Documented as a first sign of lung cancer [48]. |
Cardiomegaly | 746 | N | Not related to lung cancer although in rare cases misdiagnosed when underlying condition is mass in same geography of CXR [49]. |
Consolidation | 346 | N | Can sometimes accompany lung cancer but usually associated with pneumonia [50]. |
Edema | 51 | N | Can be a complication from treatment for lung cancer but does not indicate lung cancer [51]. |
Effusion | 2086 | Y | Can be caused by a build-up of cancer cells and a common complication of lung cancer [52]. |
Emphysema | 525 | N | Linked as a risk factor for lung cancer but not an indication [53]. |
Fibrosis | 648 | N | Linked as a risk factor for lung cancer but not an indication [54]. |
Hernia | 98 | N | Mistaken for lung cancer but does not indicate lung cancer [55]. |
Infiltration | 5270 | N | Generic descriptor used informally in radiological reports and not actually an accepted lung disease classification. |
Mass | 1367 | Y | A primary indication of lung cancer [51]. |
No Finding | 39,302 | Y | Not lung (by definition) cancer but included to enrich generated models with a counter-indicator. |
Nodule | 1924 | Y | A primary indication of lung cancer [51,56] with about 40% of nodules being cancerous. |
Pleural Thickening | 875 | N | This is often an indication of mesothelioma caused by exposure to asbestos. It is also a very common abnormal finding on CXR. It is not an indication of lung cancer [57]. |
Pneumonia | 176 | N | Often a complication of lung cancer [50] with 50–70% of patients developing a lung infection. Persistent pneumonia can lead to a diagnosis of lung cancer. Not typically used as indicator of lung cancer. |
Pneumothorax | 1506 | N | Can be the first sign of lung cancer but this is rare [58]. |
3.3. Model Development
3.3.1. Network Selection
3.3.2. Deep Learning Model Performance
3.3.3. Deep Learning Model Attention via Saliency Mapping
3.4. Malignancy Model Generation
4. Results
4.1. Model Analysis-Individual Datasets
4.2. Model Analysis-Combined Dataset
4.3. Combined Dataset Decision Tree Interpretation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lung Cancer Statistics. Available online: https://www.wcrf.org/dietandcancer/cancer-trends/lung-cancer-statistics (accessed on 8 December 2020).
- World Lung Cancer Day 2020 Fact Sheet—American College of Chest Physicians. Available online: https://www.chestnet.org/newsroom/chest-news/2020/07/world-lung-cancer-day-2020-fact-sheet (accessed on 6 October 2021).
- Yoshimura, H.; Giger, M.L.; Doi, K.; MacMahon, H.; Montner, S.M. Computerized scheme for the detection of pulmonary nodules: A nonlinear filtering technique. Investig. Radiol. 1992, 27, 124–129. [Google Scholar] [CrossRef]
- Gaol, F.L. In lung cancer diseases diagnostic asistance using gray color analysis. In Proceedings of the 2010 Second International Conference on Computational Intelligence, Modelling and Simulation, Bali, Indonesia, 28–30 September 2010; pp. 355–359. [Google Scholar]
- Ausawalaithong, W.; Thirach, A.; Marukatat, S.; Wilaiprasitporn, T. Automatic lung cancer prediction from chest X-ray images using the deep learning approach. In Proceedings of the 2018 11th Biomedical Engineering International Conference (BMEiCON), Chaing Mai, Thailand, 21–24 November 2018; Institute of Electrical and Electronics Engineers: New York, NY, USA, 2018; pp. 1–5. [Google Scholar]
- Li, X.; Shen, L.; Xie, X.; Huang, S.; Xie, Z.; Hong, X.; Yu, J. Multi-resolution convolutional networks for chest X-ray radiograph based lung nodule detection. Artif. Intell. Med. 2020, 103, 101744. [Google Scholar] [CrossRef]
- Mendoza, J.; Pedrini, H. Detection and classification of lung nodules in chest X-ray images using deep convolutional neural networks. Comput. Intell. 2020, 36, 370–401. [Google Scholar] [CrossRef]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Sardanelli, F.; Hunink, M.G.; Gilbert, F.J.; Di Leo, G.; Krestin, G.P. Evidence-based radiology: Why and how? Eur. Radiol. 2010, 20, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-G.; Jun, S.; Cho, Y.-W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep learning in medical imaging: General overview. Korean J. Radiol. 2017, 18, 570–584. [Google Scholar] [CrossRef] [Green Version]
- Stan, B.; Pranavsingh, D.; Bertalan, M. The state of artificial intelligence-based FDA-approved medical devices and algorithms: An online database. NPJ Digit. Med. 2020, 3, 1–8. [Google Scholar] [CrossRef]
- Device Classification Under Section 513(f)(2)(De Novo)—OsteoDetect. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/denovo.cfm?ID=DEN180005 (accessed on 6 January 2021).
- 510(k) Premarket Notification—HealthPNX. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K190362 (accessed on 6 January 2021).
- 510(k) Premarket Notification—Critical Care Suite. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K183182 (accessed on 6 January 2021).
- Esteva, A.; Chou, K.; Yeung, S.; Naik, N.; Madani, A.; Mottaghi, A.; Liu, Y.; Topol, E.; Dean, J.; Socher, R. Deep learning-enabled medical computer vision. NPJ Digit. Med. 2021, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez, C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scopus (Article Title, Abstract, Keywords). Available online: https://www.scopus.com/search/form.uri?display=basic (accessed on 16 October 2020).
- Liu, B.; Chi, W.; Li, X.; Li, P.; Liang, W.; Liu, H.; Wang, W.; He, J. Evolving the pulmonary nodules diagnosis from classical approaches to deep learning-aided decision support: Three decades’ development course and future prospect. J. Cancer Res. Clin. Oncol. 2019, 146, 153–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine learning in medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef] [PubMed]
- Van Beek, E.J.R.; Murchison, J.T. Artificial Intelligence and Computer-Assisted Evaluation of Chest Pathology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 145–166. [Google Scholar] [CrossRef]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2097–2106. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, S.; Qin, Z.; Zhang, Y.; Li, R.; Xia, Y. Triple attention learning for classification of 14 thoracic diseases using chest radiography. Med. Image Anal. 2021, 67, 101846. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Poblenz, E.; Dagunts, D.; Covington, B.; Bernard, D.; Lyman, K. Learning to diagnose from scratch by exploiting dependencies among labels. arXiv 2017, arXiv:1710.10501. [Google Scholar]
- Ho, T.K.K.; Gwak, J. Multiple feature integration for classification of thoracic disease in chest radiography. Appl. Sci. 2019, 9, 4130. [Google Scholar] [CrossRef] [Green Version]
- Gündel, S.; Grbic, S.; Georgescu, B.; Liu, S.; Maier, A.; Comaniciu, D. Learning to recognize abnormalities in chest X-rays with location-aware dense networks. Lect. Notes Comput. Sci. 2019, 757–765. [Google Scholar] [CrossRef] [Green Version]
- Qin, C.; Yao, D.; Shi, Y.; Song, Z. Computer-aided detection in chest radiography based on artificial intelligence: A survey. Biomed. Eng. Online 2018, 17, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Shiraishi, J.; Katsuragawa, S.; Ikezoe, J.; Matsumoto, T.; Kobayashi, T.; Komatsu, K.I.; Matsui, M.; Fujita, H.; Kodera, Y.; Doi, K. Development of a digital image database for chest radiographs with and without a lung nodule: Receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. Am. J. Roentgenol. 2000, 174, 71–74. [Google Scholar] [CrossRef]
- Anna Rita, L.; Alessandra, F.; Paola, F.; Mario, C.; Giuseppe, C.; Lucio, C.; Annemilia Del, C.; Lorenzo, B. Lung nodules: Size still matters. Eur. Respir. Rev. 2017, 26, 146. [Google Scholar] [CrossRef]
- Sánchez, M.; Benegas, M.; Vollmer, I. Management of incidental lung nodules <8 mm in diameter. J. Thorac. Dis. 2018, 10 (Suppl. S22), S2611–S2627. [Google Scholar] [CrossRef]
- Ketai, L.; Malby, M.; Jordan, K.; Meholic, A.; Locken, J. Small nodules detected on chest radiography: Does size predict calcification? Chest 2000, 118, 610–614. [Google Scholar] [CrossRef]
- Lee, C.T. What do we know about ground-glass opacity nodules in the lung? Transl. Lung Cancer Res. 2015, 4, 656–659. [Google Scholar] [CrossRef] [PubMed]
- Gomes, D.P.S.; Ulhaq, A.; Paul, M.; Horry, M.J.; Chakraborty, S.; Saha, M.; Debnath, T.; Rahaman, D.M. Features of ICU admission in X-ray images of Covid-19 patients. In Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Online Conference, 19–22 September 2021; IEEE: New York, NY, USA, 2021; pp. 200–204. [Google Scholar]
- Zhang, G.; Yang, Z.; Gong, L.; Jiang, S.; Wang, L.; Cao, X.; Wei, L.; Zhang, H.; Liu, Z. An appraisal of nodule diagnosis for lung cancer in CT images. J. Med. Syst. 2019, 43, 181. [Google Scholar] [CrossRef] [PubMed]
- Svoboda, E. Artificial intelligence is improving the detection of lung cancer. Nat. Cell Biol. 2020, 587, S20–S22. [Google Scholar] [CrossRef] [PubMed]
- Ebner, L.M.; Bütikofer, Y.F.; Ott, D.; Huber, A.T.; Landau, J.; Roos, J.E.; Heverhagen, J.T.; Christe, A. Lung nodule detection by microdose CT versus chest radiography (standard and dual-energy subtracted). Am. J. Roentge. 2015, 204, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.T.; Ivanov, A.; Mayrhofer, T.; Hosny, A.; Aerts, H.J.W.L.; Hoffmann, U. Deep learning to assess long-term mortality from chest radiographs. JAMA Netw. Open 2019, 2, e197416. [Google Scholar] [CrossRef] [PubMed]
- Szegedy, C.; Wei, L.; Yangqing, J.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Handy, C.E.; Quispe, R.; Pinto, X.; Blaha, M.J.; Blumenthal, R.S.; Michos, E.D.; Lima, J.A.C.; Guallar, E.; Ryu, S.; Cho, J.; et al. Synergistic opportunities in the interplay between cancer screening and cardiovascular disease risk assessment: Together we are stronger. Circulation 2018, 138, 727–734. [Google Scholar] [CrossRef]
- Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.; Pringle, M.; et al. The cancer imaging archive (TCIA): Maintaining and operating a public information repository. J. Digit. Imaging 2013, 26, 1045–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Open Source Computer Vision Library. 2015. Available online: https://github.com/itseez/opencv (accessed on 10 December 2020).
- Mason, D. SU-E-T-33: Pydicom: An open source DICOM library. Med. Phys. 2011, 38, 3493. [Google Scholar] [CrossRef]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated residual transformations for deep neural networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5987–5995. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; Institute of Electrical and Electronics Engineers: Honolulu, HI, USA, 2017; pp. 2261–2269. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. 2012, 2, 1097–1105. [Google Scholar] [CrossRef]
- Pokharel, U.; Shrestha, S.; Neupane, P. Atelectasis of lung as a first sign of lung cancer: A case report. J. Can. Sci. Res. 2016, 3, S1. [Google Scholar]
- Revannasiddaiah, S.; Bhardwaj, B.; Susheela, S.P.; Hiremath, S. Radiographic illusion of cardiomegaly resulting from a pulmonary blastoma in a patient imaged for evaluation of chronic bronchitis. BMJ Case Rep. 2013, 2013, 2013010179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sayako, M.; Takuya, O.; Teppei, Y.; Tomoyuki, M.; Yasuhiro, G.; Tomoko, T.; Yosuke, S.; Yoshikazu, N.; Tomoya, H.; Yusuke, G.; et al. Clinical features of primary lung cancer presenting as pulmonary consolidation mimicking pneumonia. Fujita Med. J. 2016, 2, 17–21. [Google Scholar] [CrossRef]
- Abouzgheib, W.; Dellinger, R.P. Pulmonary Complications in Cancer Patients; Gabler: Wiesbaden, Germany, 2016; pp. 191–202. [Google Scholar]
- Ioannis, P.; Ioannis, K.; Jose, M.P.; Bruce, W.R.; Georgios, T.S. Malignant pleural effusion: From bench to bedside. Eur. Repir. Rev. 2016, 25, 189–198. [Google Scholar] [CrossRef]
- Zulueta, J.J. Emphysema and lung cancer. More than a coincidence. Ann. Am. Thorac. Soc. 2015, 12, 1120–1121. [Google Scholar] [CrossRef] [PubMed]
- Karampitsakos, T.; Tzilas, V.; Tringidou, R.; Steiropoulos, P.; Aidinis, V.; Papiris, S.A.; Bouros, D.; Tzouvelekis, A. Lung cancer in patients with idiopathic pulmonary fibrosis. Pulm. Pharmacol. Ther. 2017, 45, 1–10. [Google Scholar] [CrossRef]
- Lodhia, J.V.; Appiah, S.; Tcherveniakov, P.; Krysiak, P. Diaphragmatic hernia masquerading as a pulmonary metastasis. Ann. R. Coll. Surg. Engl. 2015, 97, e27–e29. [Google Scholar] [CrossRef] [Green Version]
- Pulmonary Nodules—Health Encyclopedia—University of Rochester Medical Center. Available online: https://www.urmc.rochester.edu/encyclopedia/content.aspx?contenttypeid=22&contentid=pulmonarynodules (accessed on 10 December 2020).
- Akira, S.; Yukichika, H.; Yukiko, Y.; Mitsuhiro, S.; Megumi, T.; Yoko, M.; Akihisa, M.; Kimie, T.; Takahide, N.; Shintaro, Y. Pleural thickening on screening chest X-rays: A single institutional study. Respir. Res. 2019, 20, 1–7. [Google Scholar] [CrossRef]
- Vencevičius, V.; Cicenas, S. Spontaneous pneumothorax as a first sign of pulmonary carcinoma. World J. Surg. Oncol. 2009, 7, 57. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Dong, W.; Socher, R.; Li, L.; Kai, L.; Li, F.-F. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef] [Green Version]
- Irvin, J.; Rajpurkar, P.; Ko, M.; Yu, Y.; Ciurea-Ilcus, S.; Chute, C.; Marklund, H.; Haghgoo, B.; Ball, R.; Shpanskaya, K.; et al. CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Association for the Advancement of Artificial Intelligence (AAAI): Menlo Park, CA, USA, 2019; Volume 33, pp. 590–597. [Google Scholar]
- Pham, H.H.; Le, T.T.; Tran, D.Q.; Ngo, D.T.; Nguyen, H.Q. Interpreting chest X-rays via CNNs that exploit hierarchical disease dependencies and uncertainty labels. Neurocomputing 2021, 437, 186–194. [Google Scholar] [CrossRef]
- Allaouzi, I.; Ben Ahmed, M. A novel approach for multi-label chest X-ray classification of common thorax diseases. IEEE Access 2019, 7, 64279–64288. [Google Scholar] [CrossRef]
- Morid, M.A.; Borjali, A.; Del Fiol, G. A scoping review of transfer learning research on medical image analysis using ImageNet. Comput. Biol. Med. 2021, 128, 104115. [Google Scholar] [CrossRef] [PubMed]
- Misra, D.; Nalamada, T.; Arasanipalai, A.U.; Hou, Q. Rotate to attend: Convolutional triplet attention module. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikola, HI, USA, 11 August 2021; pp. 3138–3147. [Google Scholar]
- Transfer Learning for Computer Vision Tutorial—PyTorch Tutorials 1.7.1 Documentation. Available online: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html (accessed on 10 December 2020).
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference Learn. Represent (ICLR), San Diego, CA, USA, 5–8 May 2015. [Google Scholar]
- Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. [Google Scholar]
- Selvaraju, R.; Das, A.; Vedantam, R.; Cogswell, M.; Parikh, D.; Batra, D. Grad-CAM: Why did you say that? arXiv 2017, arXiv:1610.02391. [Google Scholar]
- Armato, S.G.; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Zhao, B.; Aberle, D.R.; Henschke, C.I.; Hoffman, E.; et al. The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans. Med. Phys. 2011, 38, 915–931. [Google Scholar] [CrossRef]
- Bradley, S.H.; Abraham, S.; Callister, M.; Grice, A.; Hamilton, W.; Lopez, R.R.; Shinkins, B.; Neal, R.D. Sensitivity of chest X-ray for detecting lung cancer in people presenting with symptoms: A systematic review. Br. J. Gen. Pr. 2019, 69, e827–e835. [Google Scholar] [CrossRef]
- Feng, M.; Yang, X.; Ma, Q.; He, Y. Retrospective analysis for the false positive diagnosis of PET-CT scan in lung cancer patients. Medicine 2017, 96, e7415. [Google Scholar] [CrossRef]
- Knight, S.; Crosbie, P.; Balata, H.; Chudziak, J.; Hussell, T.; Dive, C. Progress and prospects of early detection in lung cancer. Open Biol. 2017, 7, 170070. [Google Scholar] [CrossRef] [Green Version]
- Dixit, R.; Agarwal, K.C.; Gokhroo, A.; Patil, C.B.; Meena, M.; Shah, N.S.; Arora, P. Diagnosis and management options in malignant pleural effusions. Lung India 2017, 34, 160–166. [Google Scholar] [CrossRef]
- McDonald, R.J.; Schwartz, K.M.; Eckel, L.J.; Diehn, F.E.; Hunt, C.H.; Bartholmai, B.J.; Erickson, B.J.; Kallmes, D.F. The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad. Radiol. 2015, 22, 1191–1198. [Google Scholar] [CrossRef] [PubMed]
- Del Ciello, A.; Franchi, P.; Contegiacomo, A.; Cicchetti, G.; Bonomo, L.; Larici, A.R. Missed lung cancer: When, where, and why? Diagn. Interv. Radiol. 2017, 23, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuel, S.; Kundel, H.L.; Nodine, C.F.; Toto, L.C. Mechanism of satisfaction of search: Eye position recordings in the reading of chest radiographs. Radiology 1995, 194, 895–902. [Google Scholar] [CrossRef] [PubMed]
Configuration | Atelectasis | Effusion | Mass | Nodule |
---|---|---|---|---|
Test A (Epoch 17) | 0.782 | 0.858 | 0.811 | 0.705 |
Test B (Epoch 7) | 0.780 | 0.833 | 0.808 | 0.760 |
Test C (Epoch 8) | 0.770 | 0.863 | 0.808 | 0.739 |
Wang et al. (2017) [22] | 0.700 | 0.759 | 0.693 | 0.669 |
Wang et al. (2021) [23] | 0.779 | 0.836 | 0.834 | 0.777 |
Yao et al. [24] | 0.772 | 0.859 | 0.792 | 0.717 |
Test | Network Architecture |
---|---|
A | Densenet-121 pretrained with ImageNet weights |
B | Resnet-50 pretrained with ImageNet weights |
C | Resnet-50 with Triplet Attention/pretrained with ImageNet weights |
Diagnosis | Description | Number of Images |
---|---|---|
1 | Benign or non-malignant disease | 31 |
2 | Malignant, primary lung cancer | 17 |
3 | Malignant metastatic | 48 |
Diagnosis | Description | Number of Images |
---|---|---|
Benign | Benign lung nodule | 54 |
Malignant | Malignant lung nodule | 100 |
Test ID | Accuracy (%) | Sensitivity (%) | Specificity (%) | PPV (%) | FP Rate (%) | F1 |
---|---|---|---|---|---|---|
A | 0.850 | 0.867 | 0.800 | 0.929 | 0.200 | 0.897 |
B | 0.850 | 0.933 | 0.600 | 0.875 | 0.400 | 0.903 |
C | 0.750 | 0.733 | 0.800 | 0.917 | 0.200 | 0.8148 |
Test ID | Accuracy (%) | Sensitivity (%) | Specificity (%) | PPV (%) | FP Rate (%) | F1 |
---|---|---|---|---|---|---|
A | 0.677 | 0.938 | 0.400 | 0.625 | 0.600 | 0.750 |
B | 0.677 | 0.875 | 0.467 | 0.636 | 0.533 | 0.737 |
C | 0.710 | 1.000 | 0.400 | 0.640 | 0.600 | 0.781 |
Test ID | Accuracy (%) | Sensitivity (%) | Specificity (%) | PPV (%) | FP Rate (%) | F1 |
---|---|---|---|---|---|---|
A | 0.820 | 0.100 | 0.400 | 0.796 | 0.600 | 0.886 |
B | 0.760 | 0.800 | 0.667 | 0.849 | 0.333 | 0.824 |
C | 0.820 | 0.857 | 0.733 | 0.882 | 0.267 | 0.870 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horry, M.; Chakraborty, S.; Pradhan, B.; Paul, M.; Gomes, D.; Ul-Haq, A.; Alamri, A. Deep Mining Generation of Lung Cancer Malignancy Models from Chest X-ray Images. Sensors 2021, 21, 6655. https://doi.org/10.3390/s21196655
Horry M, Chakraborty S, Pradhan B, Paul M, Gomes D, Ul-Haq A, Alamri A. Deep Mining Generation of Lung Cancer Malignancy Models from Chest X-ray Images. Sensors. 2021; 21(19):6655. https://doi.org/10.3390/s21196655
Chicago/Turabian StyleHorry, Michael, Subrata Chakraborty, Biswajeet Pradhan, Manoranjan Paul, Douglas Gomes, Anwaar Ul-Haq, and Abdullah Alamri. 2021. "Deep Mining Generation of Lung Cancer Malignancy Models from Chest X-ray Images" Sensors 21, no. 19: 6655. https://doi.org/10.3390/s21196655
APA StyleHorry, M., Chakraborty, S., Pradhan, B., Paul, M., Gomes, D., Ul-Haq, A., & Alamri, A. (2021). Deep Mining Generation of Lung Cancer Malignancy Models from Chest X-ray Images. Sensors, 21(19), 6655. https://doi.org/10.3390/s21196655