Solid-Contact Ion-Selective Electrodes for Histamine Determination
Abstract
:1. Introduction
2. Experimental
2.1. Reagents
2.2. Fabrication of the HA ISE
2.3. Evaluation of the Potentiometric Response
3. Results
3.1. Influences of Membrane Composition and Thickness of the Membrane
3.2. Calibration Curve and Stability of the Histamine Electrode
3.3. Selectivity Coefficients
3.4. Effects of pH and Temperature
3.5. Reproducibility and Repeatability
3.6. HA Determination in Artificial Cerebrospinal Fluid
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Worm, J.; Falkenberg, K.; Olesen, J. Histamine and migraine revisited: Mechanisms and possible drug targets. J. Headache Pain 2019, 20, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Akdis, C.A.; Blaser, K. Histamine in the immune regulation of allergic inflammation. J. Allergy Clin. Immunol. 2003, 112, 15–22. [Google Scholar] [CrossRef]
- Amin, K. The role of mast cells in allergic inflammation. Respir. Med. 2012, 106, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Sjoerdsma, A.; Waalkes, T.P.; Weissbach, H. Serotonin and histamine in mast cells. Science 1957, 125, 1202–1203. [Google Scholar] [CrossRef]
- Thangam, E.B.; Jemima, E.A.; Singh, H.; Baig, M.S.; Khan, M.; Mathias, C.B.; Church, M.K.; Saluja, R. The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: The hunt for new therapeutic targets. Front. Immunol. 2018, 9, 1873. [Google Scholar] [CrossRef] [Green Version]
- Riley, J.; West, G. The presence of histamine in tissue mast cells. J. Physiol. 1953, 120, 528–537. [Google Scholar] [CrossRef]
- Panula, P.; Nuutinen, S. The histaminergic network in the brain: Basic organization and role in disease. Nat. Rev. Neurosci. 2013, 14, 472–487. [Google Scholar] [CrossRef]
- Saper, C.B.; Fuller, P.M.; Pedersen, N.P.; Lu, J.; Scammell, T.E. Sleep state switching. Neuron 2010, 68, 1023–1042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, C.; Teuber, S.; Gershwin, M.E. Histamine (scombroid) fish poisoning: A comprehensive review. Clin. Rev. Allergy Immunol. 2016, 50, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Colombo, F.M.; Cattaneo, P.; Confalonieri, E.; Bernardi, C. Histamine food poisonings: A systematic review and meta-analysis. Crit. Rev. Food Sci. Nutr. 2018, 58, 1131–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altieri, I.; Semeraro, A.; Scalise, F.; Calderari, I.; Stacchini, P. European official control of food: Determination of histamine in fish products by a HPLC–UV-DAD method. Food Chem. 2016, 211, 694–699. [Google Scholar] [CrossRef]
- Evangelista, W.P.; Silva, T.M.; Guidi, L.R.; Tette, P.A.; Byrro, R.M.; Santiago-Silva, P.; Fernandes, C.; Gloria, M.B.A. Quality assurance of histamine analysis in fresh and canned fish. Food Chem. 2016, 211, 100–106. [Google Scholar] [CrossRef]
- Kounnoun, A.; Louajri, A.; Cacciola, F.; El Cadi, H.; Bougtaib, H.; Alahlah, N.; El Baaboua, A.; El Maadoudi, M. Development and Validation of a TLC-Densitometry Method for Histamine Monitoring in Fish and Fishery Products. Molecules 2020, 25, 3611. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Ren, S.; Peng, Y.; Lv, Y.; Wang, W.; Wang, Z.; Gao, Z. A colorimetric strip for rapid detection and real-time monitoring of histamine in fish based on self-assembled polydiacetylene vesicles. Anal. Chem. 2019, 92, 1611–1617. [Google Scholar] [CrossRef]
- Wang, Q.H.; Fang, G.Z.; Liu, Y.Y.; Zhang, D.D.; Liu, J.M.; Wang, S. Fluorescent sensing probe for the sensitive detection of histamine based on molecular imprinting ionic liquid-modified quantum dots. Food Anal. Methods 2017, 10, 2585–2592. [Google Scholar] [CrossRef]
- Shi, R.; Feng, S.; Park, C.Y.; Park, K.Y.; Song, J.; Park, J.P.; Chun, H.S.; Park, T.J. Fluorescence detection of histamine based on specific binding bioreceptors and carbon quantum dots. Biosens. Bioelectron. 2020, 167, 112519. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Nair, S.S.; Sai, V.; Satija, J. Nanomaterials based optical and electrochemical sensing of histamine: Progress and perspectives. Food Res. Int. 2019, 119, 99–109. [Google Scholar] [CrossRef]
- Serrano, V.M.; Cardoso, A.R.; Diniz, M.; Sales, M.G.F. In-situ production of Histamine-imprinted polymeric materials for electrochemical monitoring of fish. Sens. Actuators B Chem. 2020, 311, 127902. [Google Scholar] [CrossRef]
- Zdrachek, E.; Bakker, E. Potentiometric sensing. Anal. Chem. 2018, 91, 2–26. [Google Scholar] [CrossRef] [Green Version]
- Isildak, Ö.; Özbek, O. Application of potentiometric sensors in real samples. Crit. Rev. Anal. Chem. 2021, 51, 218–231. [Google Scholar] [CrossRef]
- Gajjala, R.K.R.; Palathedath, S.K. Cu@ Pd core-shell nanostructures for highly sensitive and selective amperometric analysis of histamine. Biosens. Bioelectron. 2018, 102, 242–246. [Google Scholar] [CrossRef]
- Lin, Y.T.; Chen, C.H.; Lin, M.S. Enzyme-free amperometric method for rapid determination of histamine by using surface oxide regeneration behavior of copper electrode. Sens. Actuators B Chem. 2018, 255, 2838–2843. [Google Scholar] [CrossRef]
- Wackers, G.; Putzeys, T.; Peeters, M.; Van de Cauter, L.; Cornelis, P.; Wübbenhorst, M.; Tack, J.; Troost, F.; Verhaert, N.; Doll, T.; et al. Towards a catheter-based impedimetric sensor for the assessment of intestinal histamine levels in IBS patients. Biosens. Bioelectron. 2020, 158, 112152. [Google Scholar] [CrossRef] [PubMed]
- Pastor-Fernández, C.; Uddin, K.; Chouchelamane, G.H.; Widanage, W.D.; Marco, J. A comparison between electrochemical impedance spectroscopy and incremental capacity-differential voltage as Li-ion diagnostic techniques to identify and quantify the effects of degradation modes within battery management systems. J. Power Sources 2017, 360, 301–318. [Google Scholar] [CrossRef]
- He, C.; Wang, Z.; Wang, Y.; Hu, R.; Li, G. Nonenzymatic all-solid-state coated wire electrode for acetylcholine determination in vitro. Biosens. Bioelectron. 2016, 85, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, H.; Yang, X.; Luo, Z.; Zhang, J.; Li, G. All-solid-state blood calcium sensors based on screen-printed poly (3, 4-ethylenedioxythiophene) as the solid contact. Sens. Actuators B Chem. 2012, 173, 630–635. [Google Scholar] [CrossRef]
- Shao, Y.; Ying, Y.; Ping, J. Recent advances in solid-contact ion-selective electrodes: Functional materials, transduction mechanisms, and development trends. Chem. Soc. Rev. 2020, 49, 4405–4465. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Yuk, H.; Lin, S.; Jian, N.; Qu, K.; Xu, J.; Zhao, X. Pure Pedot: Pss hydrogels. Nat. Commun. 2019, 10, 1–10. [Google Scholar]
- Kayser, L.V.; Lipomi, D.J. Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS. Adv. Mater. 2019, 31, 1806133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amorim, C.; Souza, R.; Araújo, A.; Montenegro, M.; Silva, V. SI lab-on-valve analysis of histamine using potentiometric detection for food quality control. Food Chem. 2010, 122, 871–876. [Google Scholar] [CrossRef]
- Elmosallamy, M.A. Novel Sensors for Batch and Flow Injection Analysis of Histamine Based on Crown Ethers. Electroanalysis 2012, 24, 1226–1235. [Google Scholar] [CrossRef]
- Walker, F.A. Steric and electronic effeccts in the coordination of amines to a cobalt (II) porphyrin. J. Am. Chem. Soc. 1973, 95, 1150–1153. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, S.; Zou, H.; Wu, Z.; Luo, Z.; Li, G. Protoporphyrin IX Based All-Solid-State Ion-Selective Electrodes for Choline Determination In Vitro. Appl. Sci. 2021, 11, 5549. [Google Scholar] [CrossRef]
- Buck, R.P.; Lindner, E. Recommendations for nomenclature of ion-selective electrodes (IUPAC Recommendations 1994). Pure Appl. Chem. 1994, 66, 2527–2536. [Google Scholar] [CrossRef]
- Ogawara, S.; Carey, J.L., III; Zou, X.U.; Buhlmann, P. Donnan failure of ion-selective electrodes with hydrophilic high-capacity ion-exchanger membranes. ACS Sens. 2016, 1, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Gagic, M.; Jamroz, E.; Krizkova, S.; Milosavljevic, V.; Kopel, P.; Adam, V. Current trends in detection of histamine in food and beverages. J. Agric. Food Chem. 2018, 67, 773–783. [Google Scholar] [CrossRef]
- Kielmann, M.; Senge, M.O. Molecular Engineering of Free-Base Porphyrins as Ligands—The N-H X Binding Motif in Tetrapyrroles. Angew. Chem. Int. Ed. 2019, 58, 418–441. [Google Scholar] [CrossRef]
- Abboud, I.; Lerolle, N.; Urien, S.; Tadié, J.M.; Leviel, F.; Fagon, J.Y.; Faisy, C. Pharmacokinetics of epinephrine in patients with septic shock: Modelization and interaction with endogenous neurohormonal status. Crit. Care 2009, 13, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chapp, A.D.; Schum, S.; Behnke, J.E.; Hahka, T.; Huber, M.J.; Jiang, E.; Larson, R.A.; Shan, Z.; Chen, Q.H. Measurement of cations, anions, and acetate in serum, urine, cerebrospinal fluid, and tissue by ion chromatography. Physiol. Rep. 2018, 6, e13666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type | KTFPB | Fe(TPP)Cl | PVC | 2-NPOE | Sensitivity | Detection |
---|---|---|---|---|---|---|
(% w/w) | (% w/w) | (% w/w) | (% w/w) | (mV/Decade) | Limit (M) | |
1 | 0.5 | 2.5 | 32.3 | 64.7 | 44.75 | 1.17 × 10−5 |
2 | 0.5 | 4.0 | 31.8 | 63.7 | 46.42 | 8.58 × 10−6 |
3 | 0.5 | 6.5 | 31.0 | 62.0 | 46.56 | 8.52 × 10−6 |
4 | 0 | 4.0 | 32.0 | 64.0 | - | - |
Type | Dipping | Sensitivity | Detection | Response | Long-Term |
---|---|---|---|---|---|
Time | (mV/Decade) | Limit (M) | Time (s) | Stability (Days) | |
i | 3 | 46.11 | 10−5 | 5 | 15 |
ii | 5 | 46.42 | 8.58 × 10−6 | 5 | 35 |
iii | 7 | 45.14 | 9.65 × 10−6 | >10 | - |
Interference j | Constant Concentration (M) | Selectivity Coefficient (Log ) |
---|---|---|
K | 0.01 | −1.67 |
Na | 0.1 | −3.10 |
Ca | 0.1 | −3.85 |
GC | 0.1 | −3.47 |
AA | 0.01 | −2.57 |
HI | 0.05 | −3.17 |
EP | 0.01 | −1.27 |
Ur | 0.1 | −3.50 |
Number of HA ISE | C(HA) (mM) | |||
---|---|---|---|---|
0.100 | 1.000 | 10.000 | ||
Mean (mM) | 0.101 | 1.008 | 9.455 | |
No. 1 | S.D. (mM) | 0.002 | 0.021 | 0.209 |
R.S.D. (%) | 1.430 | 0.824 | 5.451 | |
Mean (mM) | 0.099 | 1.030 | 10.069 | |
No. 2 | S.D. (mM) | 0.002 | 0.017 | 0.764 |
R.S.D. (%) | 1.289 | 3.020 | 0.689 | |
Mean (mM) | 0.101 | 1.051 | 10.536 | |
No. 3 | S.D. (mM) | 0.004 | 0.088 | 0.823 |
R.S.D. (%) | 0.983 | 5.077 | 5.359 | |
Mean (mM) | 0.107 | 0.995 | 10.306 | |
No. 4 | S.D. (mM) | 0.002 | 0.026 | 0.217 |
R.S.D. (%) | 7.017 | 0.502 | 3.064 | |
Mean (mM) | 0.109 | 1.020 | 10.964 | |
No. 5 | S.D. (mM) | 0.004 | 0.037 | 0.393 |
R.S.D. (%) | 9.641 | 2.049 | 9.641 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, S.; Wang, Y.; Zhang, W.; Wang, Y.; Li, G. Solid-Contact Ion-Selective Electrodes for Histamine Determination. Sensors 2021, 21, 6658. https://doi.org/10.3390/s21196658
Ma S, Wang Y, Zhang W, Wang Y, Li G. Solid-Contact Ion-Selective Electrodes for Histamine Determination. Sensors. 2021; 21(19):6658. https://doi.org/10.3390/s21196658
Chicago/Turabian StyleMa, Siyuan, You Wang, Wei Zhang, Ye Wang, and Guang Li. 2021. "Solid-Contact Ion-Selective Electrodes for Histamine Determination" Sensors 21, no. 19: 6658. https://doi.org/10.3390/s21196658
APA StyleMa, S., Wang, Y., Zhang, W., Wang, Y., & Li, G. (2021). Solid-Contact Ion-Selective Electrodes for Histamine Determination. Sensors, 21(19), 6658. https://doi.org/10.3390/s21196658