Validation of Low-Cost Impedance Analyzer via Nitrate Detection
Abstract
:1. Introduction
1.1. Impedance Spectroscopy
1.2. Low-Cost Design
1.3. Experimental Design
2. Materials and Methods
2.1. Impedance Spectroscopy Devices
2.2. Nitrate Solutions
2.3. Solution Interface Setup
2.4. Experimental Procedure
3. Results and Discussion
3.1. Initial Results
3.2. Calibration
3.3. Nitrate Analysis
3.4. Performance Comparison
3.5. Cost Analysis and Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barsoukov, E.; Macdonald, J.R. Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2005; pp. 1–595. [Google Scholar] [CrossRef]
- Viswam, V.; Bounik, R.; Shadmani, A.; Dragas, J.; Urwyler, C.; Boos, J.A.; Obien, M.E.J.; Muller, J.; Chen, Y.; Hierlemann, A. Impedance Spectroscopy and Electrophysiological Imaging of Cells with a High-Density CMOS Microelectrode Array System. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 1356–1368. [Google Scholar] [CrossRef]
- Allegri, D.; Donida, A.; Malcovati, P.; Barrettino, D. CMOS-Based Multifrequency Impedance Analyzer for Biomedical Applications. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Michalikova, M.; Prauzek, M. A hybrid device for electrical impedance tomography and bioelectrical impedance spectroscopy measurement. In Proceedings of the Canadian Conference on Electrical and Computer Engineering, Toronto, ON, Canada, 5–8 May 2014; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Ciccarella, P.; Carminati, M.; Ferrari, G.; Bianchi, D.; Grillanda, S.; Morichetti, F.; Melloni, A.; Sampietro, M. Impedance-Sensing CMOS Chip for Noninvasive Light Detection in Integrated Photonics. IEEE Trans. Circuits Syst. II Express Briefs 2016, 63, 929–933. [Google Scholar] [CrossRef]
- Saeed, M.A.; Kang, H.C.; Yoo, K.; Asiam, F.K.; Lee, J.J.; Shim, J.W. Cosensitization of metal-based dyes for high-performance dye-sensitized photovoltaics under ambient lighting conditions. Dye. Pigment. 2021, 194, 109624. [Google Scholar] [CrossRef]
- Niu, Y.; Sun, F.; Xu, Y.; Cong, Z.; Wang, E. Applications of electrochemical techniques in mineral analysis. Talanta 2014, 127, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Murrieta-Rico, F.N.; Luque, M.; Romo-Cárdenas, G.; Luque, P.A. Evaluation of naturally synthesized ZnO for sensing applications using EIS. Mater. Today Proc. 2021, in press. [Google Scholar] [CrossRef]
- Fredj, Z.; Baraket, A.; Ben Ali, M.; Zine, N.; Zabala, M.; Bausells, J.; Elaissari, A.; Benson, N.U.; Jaffrezic-Renault, N.; Errachid, A. Capacitance Electrochemical pH Sensor Based on Different Hafnium Dioxide (HfO2) Thicknesses. Chemosensors 2021, 9, 13. [Google Scholar] [CrossRef]
- Ryu, H.; Thompson, D.; Huang, Y.; Li, B.; Lei, Y. Electrochemical sensors for nitrogen species: A review. Sens. Actuators Rep. 2020, 2, 100022. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, X.; Wang, M.; He, L.; Zhang, Z. Preparation of Cu2O/CNTs composite and its application as sensing platform for detecting nitrite in water environment. Measurement 2018, 128, 189–196. [Google Scholar] [CrossRef]
- Alahi, M.E.E.; Mukhopadhyay, S.C.; Burkitt, L. Imprinted polymer coated impedimetric nitrate sensor for real- time water quality monitoring. Sens. Actuators Chem. 2018, 259, 753–761. [Google Scholar] [CrossRef]
- Dudykevych, T.; Gersing, E.; Thiel, F.; Hellige, G. Impedance analyzer module for EIT and spectroscopy using undersampling. Physiol. Meas. 2001, 22, 19–24. [Google Scholar] [CrossRef]
- Grossi, M.; Parolin, C.; Vitali, B.; Riccò, B. Electrical Impedance Spectroscopy (EIS) characterization of saline solutions with a low-cost portable measurement system. Eng. Sci. Technol. Int. J. 2019, 22, 102–108. [Google Scholar] [CrossRef]
- Munjal, R.; Wendler, F.; Kanoun, O. Embedded Wideband Measurement System for Fast Impedance Spectroscopy Using Undersampling. IEEE Trans. Instrum. Meas. 2020, 69, 3461–3469. [Google Scholar] [CrossRef]
- De Beer, D.J.; Joubert, T.H. Impedance spectroscopy for determination of total dissolved solids in aqueous solutions of sodium chloride and magnesium sulphate. In Proceedings of the 2019 IEEE SENSORS, Montreal, QC, Canada, 27–30 October 2019; pp. 1–4. [Google Scholar] [CrossRef]
- De Beer, D.; Joubert, T.H. Undersampling and Saturation for Impedance Spectroscopy Performance. IEEE Sens. J. 2021, 1–8. [Google Scholar] [CrossRef]
- Ojarand, J.; Min, M.; Koel, A. Multichannel electrical impedance spectroscopy analyzer with microfluidic sensors. Sensors 2019, 19, 1891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezuidenhout, P.; Smith, S.; Joubert, T.H. A Low-Cost Inkjet-Printed Paper-Based Potentiostat. Appl. Sci. 2018, 8, 968. [Google Scholar] [CrossRef] [Green Version]
- Olatinwo, S.O.; Joubert, T.H. Optimizing the Energy and Throughput of a Water-Quality Monitoring System. Sensors 2018, 18, 1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrov, D.; Taron, K.F.; Hilleringmann, U.; Joubert, T.H. Low-cost Sensor System for on-the-field Water Quality Analysis. In Proceedings of the 2021 Smart Systems Integration (SSI), Grenoble, France, 26–28 April 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Hörstmann, C.; Brink, H.G.; Chirwa, E.M. Pb(II) Bio-Removal, Viability, and Population Distribution of an Industrial Microbial Consortium: The Effect of Pb(II) and Nutrient Concentrations. Sustainability 2020, 12, 2511. [Google Scholar] [CrossRef] [Green Version]
- Chimhundi, J.; Hörstmann, C.; Chirwa, E.M.N.; Brink, H.G. Microbial Removal of Pb(II) Using an Upflow Anaerobic Sludge Blanket (UASB) Reactor. Catalysts 2021, 11, 512. [Google Scholar] [CrossRef]
- Germon, J.C. Nitrates in the Environment. 2019. Available online: https://www.encyclopedie-environnement.org/en/life/nitrates-in-environment/ (accessed on 1 October 2021).
- Khanfar, M.F.; Al-Faqheri, W.; Al-Halhouli, A. Low Cost Lab on Chip for the Colorimetric Detection of Nitrate in Mineral Water Products. Sensors 2017, 17, 2345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrader, K.K.; Davidson, J.W.; Summerfelt, S.T. Evaluation of the impact of nitrate-nitrogen levels in recirculating aquaculture systems on concentrations of the off-flavor compounds geosmin and 2-methylisoborneol in water and rainbow trout (Oncorhynchus mykiss). Aquac. Eng. 2013, 57, 126–130. [Google Scholar] [CrossRef] [Green Version]
- Camargo, J.A.; Alonso, A.; Salamanca, A. Nitrate toxicity to aquatic animals: A review with new data for freshwater invertebrates. Chemosphere 2005, 58, 1255–1267. [Google Scholar] [CrossRef] [PubMed]
- USEPA. National Primary Drinking Water Regulations | Ground Water and Drinking Water US EPA. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 1 October 2021).
- Macherey-Nagel. Colorimetric Test kit VISOCOLOR ECO Nitrate. Available online: https://www.mn-net.com/colorimetric-test-kit-visocolor-eco-nitrate-931041 (accessed on 1 October 2021).
- Metrohm Dropsens. µStat-i 400s Potentiostat/Galvanostat/Impedance Analyzer (EIS). 2021. Available online: https://www.metrohm.com/en-za/products-overview/electrochemistry/portable-potentiostats/STAT-I-400S (accessed on 1 October 2021).
- He, F.; Huang, X.; Liu, Y.; Yan, M. Fast Signal Recovery from Saturated Measurements by Linear Loss and Nonconvex Penalties. IEEE Signal Process. Lett. 2018, 25, 1374–1378. [Google Scholar] [CrossRef]
- Ge, Y.; Xie, X.; Roscher, J.; Holze, R.; Qu, Q. How to measure and report the capacity of electrochemical double layers, supercapacitors, and their electrode materials. J. Solid State Electrochem. 2020, 24, 3215–3230. [Google Scholar] [CrossRef]
- Breniuc, L.; David, V.; Haba, C.G. Wearable impedance analyzer based on AD5933. In Proceedings of the EPE 2014—Proceedings of the 2014 International Conference and Exposition on Electrical and Power Engineering, Iasi, Romania, 6–18 October 2014; Institute of Electrical and Electronics Engineers Inc.: Hoboken, NJ, USA, 2014; pp. 585–590. [Google Scholar] [CrossRef]
- Do Amaral, C.E.F.; Lopes, H.S.; Arruda, L.V.; Hara, M.S.; Gonçalves, A.J.; Dias, A.A. Design of a complex bioimpedance spectrometer using DFT and undersampling for neural networks diagnostics. Med. Eng. Phys. 2011, 33, 356–361. [Google Scholar] [CrossRef] [PubMed]
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
Desired Concentration (mg/L) | 0 | 3 | 10 | 30 | 90 | 300 | 1000 |
Proportion of 1000 mg/L (%) | 0 | 0.3 | 1 | 3 | 9 | 30 | 100 |
Volume of 1000 mg/L (mL) | 0 | 0.15 | 0.5 | 1.5 | 4.5 | 15 | 50 |
Volume of distilled water (mL) | 50 | 49.85 | 49.5 | 48.5 | 45.5 | 35 | 0 |
Label in Figure 3 | (a) | (b) | (c) | (d) | (e) | (f) | N/A |
Parameter | Value |
---|---|
Frequency Start | 10 Hz |
Frequency Stop | 100 kHz |
Points | 29 |
Voltage Amplitude | 100 mV |
Settling Time | 1 s |
Our Impedance analyzer | DropSens µStat-i 400s | |
---|---|---|
Frequency Range | 60 × 10−3–12.5 × 106 Hz | 1 × 10−3–1 × 106 Hz |
Frequency Resolution | 11.64 mHz | 1 mHz |
Impedance Range | 3.125–6.4 × 103 Ω (1 range) | 100–10 × 106 Ω (9 ranges) |
Impedance Accuracy | % | % |
Measurement Duration | 3 | 12 |
Component | Original Cost ($) | 2021 Cost ($) |
---|---|---|
PCB | 15.3 | 4.50 |
AD9835 | 25.9 | 9.18 |
FT232RL | 5.2 | 4.25 |
CLC1005 | 3.6 | 3.41 |
Passives | 2.6 | 1.50 |
Total | 52.4 | 22.84 |
Reference | Frequency Bandwidth | Max Sampling Frequency and Resolution of ADC | Measurement Deviation | Cost |
---|---|---|---|---|
Breniuc et al. [33] (Romania, 2014) | 1 × 103–100 × 103 Hz | 1 MHz, 12 Bit | Relative Error of the Impedance Modulus Measurement is in the range of ±2% | Approx. 36$ |
do Amaral et al. [34] (Brazil, 2011) | 50–1 × 106 Hz | 12.5 kHz, N/A | Magnitude Mean Deviation of 2.9% and Phase Mean Deviation of 0.69 | Approx. 48$ |
Michalikova et al. [4] (Czech Republic, 2014) | 1 × 103–1 × 106 Hz | N/A | Impedance Relative Deviation of −4.52% to 5.98% with Mean Value of −0.02% | Approx. 24$ |
Munjal et al. [15] (Germany, 2020) | DC to 10 MHz | 1 MHz, 12 Bit | Impedance Magnitude Standard Deviation of 0.5% and Impedance Phase Standard Deviation of 0.55 | Approx. 24$ |
This Paper (South Africa, 2021) | 60 × 10−3–12.5 × 106 Hz | 1.2 MHz, 10 Bit | Magnitude Absolute Mean Deviation of 1.28% and Phase Absolute Mean Deviation of 0.96 | Approx. 52$ (22.84$ based on US pricing) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Beer, D.J.; Joubert, T.-H. Validation of Low-Cost Impedance Analyzer via Nitrate Detection. Sensors 2021, 21, 6695. https://doi.org/10.3390/s21196695
De Beer DJ, Joubert T-H. Validation of Low-Cost Impedance Analyzer via Nitrate Detection. Sensors. 2021; 21(19):6695. https://doi.org/10.3390/s21196695
Chicago/Turabian StyleDe Beer, Dirk Johannes, and Trudi-Heleen Joubert. 2021. "Validation of Low-Cost Impedance Analyzer via Nitrate Detection" Sensors 21, no. 19: 6695. https://doi.org/10.3390/s21196695
APA StyleDe Beer, D. J., & Joubert, T. -H. (2021). Validation of Low-Cost Impedance Analyzer via Nitrate Detection. Sensors, 21(19), 6695. https://doi.org/10.3390/s21196695