Thermal and Geometric Error Compensation Approach for an Optical Linear Encoder
Abstract
:1. Introduction
2. The Error Compensation Method for Linear Encoder
3. Experimental Setup
4. Results
4.1. Estimation of the Real Thermal Coefficient
4.2. Recalculation of the Compensated Results According to the Real CTE
5. Discussion
- At nominal ambient temperature, measured encoder average accuracy was After the average position error graph approximation and position compensation, the recorded error was minimized to The approximation accuracy evaluating ~96% measured positions reached
- At different ambient temperatures (; and , encoder average accuracy respectively reached , and without compensation. Applied mathematical algorithm at these temperatures could approximate encoder error correspondingly: ; , and Considering that the maximal error value reaches up to , the average accuracy of approximation was accepted as reasonable.
- After the position compensation process, the average encoder accuracy at different temperatures was determined as the following: (at ); (at ), and (at ). Considering that the specified accuracy of a standard encoder is per meter, the compensated average encoder accuracy (including the uncertainty of the approximation at different temperatures) was within this range. It can be stated that the performance of the encoder remained under different thermal environmental conditions.
- The presented algorithm could be optimized according to experimentally estimated real CTE value. Embedding this value into the compensation allowed to improve the accuracy of the encoder error approximation which in turn decreased the total error. Theoretical calculations show that the encoder accuracy could reach: (at ); (at ); and (at ).
6. Conclusions
- The thermoelastic linear encoder deformation caused by external heat sources and changing ambient temperature is significant. Considering the linear thermal expansion coefficient, which greatly depends on an encoder design and used materials, and the working environment conditions, the linear position measurement uncertainty could have a big numerical value. This could lead to undesirable performance of the encoder or even a whole application.
- The proposed error compensation model is suitable for thermoelastic and geometric error compensation. The performed experiments show that the introduced tested encoder error could be significantly reduced up to 98%. Usage of this kind’s compensation might be cheaper and more appropriate solution compared to others, like encoder design including close to zero thermal expansion materials or control of working environment temperature.
- The compensation algorithm implementation into FPGA-based calculation platform demonstrates the reliable performance. Such hardware selection can ensure an appropriate calculation speed for a real-time application. Due to its flexibility and low cost, it is possible to integrate this device into encoder design or use it like a subsequent electronics module.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CTE | Coefficient of Thermal Expansion |
FPGA | Field-programmable Gate Array |
References
- Zhao, L.; Cheng, K.; Chen, S.; Ding, H.; Zhao, L. An approach to investigate moiré patterns of a reflective linear encoder with application to accuracy improvement of a machine tool. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018, 233, 927–936. [Google Scholar] [CrossRef]
- Bai, Q.; Liang, Y.; Cheng, K.; Long, F. Design and analysis of a novel large-aperture grating device and its experimental validation. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2013, 227, 1349–1359. [Google Scholar] [CrossRef]
- Liu, C.; Jywe, W.; Hsu, T. The application of the double-redheads planar encoder system for error calibration of computer numerical control machine tools. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2004, 218, 1077–1089. [Google Scholar] [CrossRef]
- Gao, W.; Kim, S.W.; Bosse, H.; Haitjema, H.; Chen, Y.; Lu, X.D.; Knapp, W.; Weckenmann, A.; Estler, T.; Kunzmann, H. Measurement technologies for precision positioning. Cirp Ann. Manuf. Technol. 2015, 64, 773–796. [Google Scholar] [CrossRef]
- Ishii, N.; Taniguchi, K.; Yamazaki, K.; Aoyama, H. Performance improvement of machine tool by high accuracy calibration of built-in rotary encoders. In Proceedings of the 9th International Conference on Leading Edge Manufacturing in 21st Century, Hiroshima City, Japan, 13–17 November 2017. [Google Scholar]
- Xie, L.-B.; Qiu, Z.-C.; Zhang, X.-M. Development of a 3-PRR precision tracking system with full closed-loop measurement and control. Sensors 2019, 19, 1756. [Google Scholar] [CrossRef] [Green Version]
- Tang, T.; Chen, S.; Huang, X.; Yang, T.; Qi, B. Combining load and motor encoders to compensate nonlinear disturbances for high precision tracking control of gear-driven Gimbal. Sensors 2018, 18, 754. [Google Scholar] [CrossRef] [Green Version]
- Chong, K.K.; Wong, C.W.; Siaw, F.; Yew, T.; Ng, S.; Liang, S.; Lim, Y.; Liong, L.S. Integration of an on-axis general sun-tracking formula in the algorithm of an open-loop sun-tracking system. Sensors 2009, 9, 7849–7865. [Google Scholar] [CrossRef] [Green Version]
- Algburi, R.N.A.; Gao, H. Health assessment and fault detection system for an industrial robot using the rotary encoder signal. Energies 2019, 12, 2816. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Jianjun, Y.; Gao, L. External force estimation method for robotic manipulator based on double encoders of joints. IEEE Int. Conf. Robot. Biomim. 2018. [Google Scholar] [CrossRef]
- Peng, L.; Xiangpeng, L. Common sensors in industrial robots: A review. J. Phys. Conf. Ser. 2019, 1267, 012036. [Google Scholar]
- Mikhel, S.; Popov, D.; Mamedov, S.; Klimchik, A. Advancement of robots with double encoders for industrial and collaborative applications. In Proceedings of the 23rd Conference of Open Innovations Association (FRUCT), Bologna, Italy, 13–16 November 2018; pp. 246–252. [Google Scholar]
- Rodriguez-Donate, C.; Osornio-Rios, R.A.; Rivera-Guillen, J.R.; Romero-Troncoso, R.J. Fused smart sensor network for multi-axis forward kinematics estimation in industrial robots. Sensors 2011, 11, 4335–4357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, A.; Gao, W.; Hosono, K.; Shimizu, Y.; Shi, L.; Zeng, L. A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement. Precis. Eng. 2012, 36, 576–585. [Google Scholar] [CrossRef]
- Lee, C.B.; Kim, G.H.; Lee, S.K. Design and construction of a single unit multi-function optical encoder for a six-degree-of-freedom motion error measurement in an ultraprecision linear stage. Meas. Sci. Technol. 2011, 22, 105901. [Google Scholar] [CrossRef]
- Li, Y.T.; Fan, K.C. A novel method of angular positioning error analysis of rotary stages based on the Abbe principle. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018, 232, 1885–1892. [Google Scholar] [CrossRef]
- Lou, Z.F.; Hao, X.P.; Cai, Y.D.; Lu, T.F.; Wang, X.D.; Fan, K.C. An embedded sensors system for real-time detecting 5-DOF error motions of rotary stages. Sensors 2019, 19, 2855. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, R.; Mannan, M.A.; Poo, A.N. Error compensation in machine tools—A review: Part I: Geometric, cutting-force induced and fixture-dependent errors. Int. J. Mach. Tools Manuf. 2000, 40, 1235–1256. [Google Scholar] [CrossRef]
- Ramesh, R.; Mannan, M.A.; Poo, A.N. Error compensation in machine tools—A review: Part II: Thermal errors. Int. J. Mach. Tools Manuf. 2000, 40, 1257–1284. [Google Scholar] [CrossRef]
- Mareš, M.; Horejš, O.; Havlik, L. Thermal error compensation of a 5-axis machine tool using indigenous temperature sensors and CNC integrated Python code validated with a machined test piece. Precis. Eng. 2020, 66, 21–30. [Google Scholar] [CrossRef]
- Mareš, M.; Horejš, O. Modelling of cutting process impact on machine tool thermal behaviour based on experimental data. Procedia Cirp 2017, 58, 152–157. [Google Scholar] [CrossRef]
- Zaplata, J.; Pajor, M. Piecewise compensation of thermal errors of a ball screw driven CNC axis. Precis. Eng. 2019, 60, 160–166. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.; Ji, S.; Liang, F. The selection of temperature-sensitivity points based on K-harmonic means clustering and thermal positioning error modeling of machine tools. Int. J. Adv. Manuf. Technol. 2019, 100, 2333–2348. [Google Scholar] [CrossRef]
- Polyakov, A.N.; Parfenov, I.V. Thermal error compensation in CNC machine tools using measurement technologies. J. Phys. Conf. Ser. 2019, 1333, 062021. [Google Scholar] [CrossRef]
- Yao, X.; Hu, T.; Yin, G.; Cheng, C. Thermal error modeling and prediction analysis based on OM algorithm for machine tools spindle. Int. J. Adv. Manuf. Technol. 2020, 106, 3345–3356. [Google Scholar] [CrossRef]
- Tan, F.; Deng, C.; Xiao, H.; Luo, J.; Zhao, S. A wrapper approach-based key temperature point selection and thermal error modeling method. Int. J. Adv. Manuf. Technol. 2020, 106, 907–920. [Google Scholar] [CrossRef]
- Lei, M.; Yang, J.; Wang, S.; Zhao, L.; Xia, P.; Jiang, G.; Mei, X. Semi-supervised modeling and compensation for the thermal error of precision feed axis. Int. J. Adv. Manuf. Technol. 2019, 104, 4629–4640. [Google Scholar] [CrossRef]
- Shi, X.; Wang, W.; Mu, Y.; Yang, X. Thermal characteristics testing and thermal error modeling on a worm gear grinding machine considering cutting fluid thermal effect. Int. J. Adv. Manuf. Technol. 2019, 103, 4317–4329. [Google Scholar] [CrossRef]
- Alejandre, I.; Artes, M. Machine tool errors caused by optical linear encoders. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2004, 218, 113–122. [Google Scholar] [CrossRef]
- Lopez, J.; Artes, M.; Alejandre, I. Analysis of optical linear encoder`s errors under vibration at different mounting conditions. Measurement 2011, 44, 1367–1380. [Google Scholar] [CrossRef]
- Lopez, J.; Artes, M.; Alejandre, I. Analysis under vibrations of optical linear encoders based on different scanning methods using an improved experimental approach. Exp. Tech. 2012, 36, 35–47. [Google Scholar] [CrossRef]
- Alejandre, I.; Artes, M. Method for the evaluation of optical encoders performance under vibration. Precis. Eng. 2007, 31, 114–121. [Google Scholar] [CrossRef]
- Albrecht, C.; Klock, J.; Martens, O.; Schumacher, W. Online estimation and correction of systematic encoder line errors. Machines 2017, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Mendenhall, M.H.; Windover, D.; Henins, A.; Cline, J.P. An algorithm for the compensation of short-period errors in optical encoders. Metrologia 2015, 52, 685. [Google Scholar] [CrossRef]
- Ye, G.; Fan, S.; Liu, H.; Li, X.; Yu, X.; Yu, H.; Shi, Y.; Yin, L.; Lu, B. Design of a precise and robust linearized converter for optical encoders using a ratiometric technique. Meas. Sci. Technol. 2014, 25, 12. [Google Scholar] [CrossRef]
- Yandayan, T.; Geckeler, R.D.; Just, A.; Krause, M.; Akgoz, S.A.; Aksulu, M.; Grubert, B.; Watanabe, T. Investigation of interpolation errors of angle encoders for high precision angle metrology. Meas. Sci. Technol. 2018, 29. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Yan, X.; Chen, X.; Lv, H. Compensation of Moire fringe sinusoidal deviation in photoelectric encoder based on tunable filter. In Proceedings of the Engineering, Computer Science 2011 Symposium on Photonics and Optoelectronics (SOPO) NA, Wuhan, China, 16–18 May 2011. [CrossRef]
- Alejandre, I.; Artes, M. Real thermal coefficient in optical linear encoders. Exp. Tech. 2004, 28, 18–22. [Google Scholar] [CrossRef]
- Alejandre, I.; Artes, M. Thermal non-linear behaviour in optical linear encoders. Int. J. Mach. Tools Manuf. 2006, 46, 1319–1325. [Google Scholar] [CrossRef]
- Yu, L.D.; Bao, W.H.; Zhao, H.N.; Jia, H.K.; Zhang, R. Application and novel angle measurement error compensation method of circular gratings. Opt. Prec. Eng. 2019, 27, 1719–1726. [Google Scholar]
- Jia, H.K.; Yu, L.D.; Jiang, Y.Z.; Zhao, G.N.; Cao, J.M. Compensation of rotary encoders using Fourier expansion-back propagation neural network optimized by genetic algorithm. Sensors 2020, 20, 2603. [Google Scholar] [CrossRef]
- Hu, F.; Chen, X.; Cai, N.; Lin, Y.J.; Zhang, F.; Wang, H. Error analysis and compensation of an optical linear encoder. IET Sci. Meas. Technol. 2018, 12, 561–566. [Google Scholar] [CrossRef]
- Gurauskis, D.; Kilikevičius, A.; Borodinas, S.; Kasparaitis, A. Analysis of geometric and thermal errors of linear encoder for real-time compensation. Sens. Actuators A Phys. 2019, 296, 145–154. [Google Scholar] [CrossRef]
- ISO 5725-1: 1994 (R2018). Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 1: General Principles and Definitions. Available online: https://www.iso.org/standard/11833.html (accessed on 6 January 2021).
- Fast and Simple Measurement of Position Changes. Available online: https://www.ichaus.de/upload/pdf/WP2en_EncoderInterface_14082012.pdf (accessed on 27 November 2020).
- BiSS Interface. Available online: https://biss-interface.com/ (accessed on 27 November 2020).
Concept | Value | Units |
---|---|---|
Measuring length (ML) | 1200 | mm |
Accuracy (to any meter within the ML) | ±5 | µm/m |
Resolution | 0.1 | µm |
Interface | BiSS-C | - |
Aluminum extrusion | Dimensions: 50 × 58.5 × 1485 | mm × mm × mm |
Thermal coefficient (CTE): 23 × 10−6 | m/(m °C) | |
Stainless steel tape | Dimensions: 12 × 0.5 × 1440 | mm × mm × mm |
Thermal coefficient (CTE): 10.5 × 10−6 | m/(m °C) |
Position | Object |
---|---|
1 | Granite base |
2 | Stainless steel support (for encoder mounting) |
3 | Moving carriage (with aerostatic bearings) |
4 | Optical linear encoder (device under test) |
5 | Fixing screws (for encoder reading head) |
6 | Fixing screw (for encoder aluminum extrusion) |
7 | Subsequent electronics (for error compensation) |
8 | Ambient temperature sensor (E1738A) |
9 | Laser (5519A/B) |
10 | Interferometer assembly (linear interferometer, linear retroreflector, base, height adjuster, and post) |
11 | Retroreflector assembly (linear retroreflector, post and height adjuster, base) |
12 | Temperature sensors (E1737A) |
13 | USB sensor hub (E1736A) |
14 | USB axis module (E1735A) |
15 | PC (with an appropriate software) |
Parameter | Ambient Temperature | |||
---|---|---|---|---|
17.8 °C | 20 °C | 22.6 °C | 25.3 °C | |
Accuracy of approximating function (by mean of standard deviation) | ±0.98 µm | ±0.34 µm | ±1.02 µm | ±1.40 µm |
Std. dev. of ~96% measurements (Std. dev. multiplied by 2.1) | ±2.06 µm | ±0.72 µm | ±2.14 µm | ±2.94 µm |
Maximal error value (Non-compensated encoder) | 0.07 µm | 3.43 µm | 75.47 µm | 150.03 µm |
Minimal error value (Non-compensated encoder) | −60.09 µm | −0.96 µm | 0.01 µm | 0.15 µm |
Average accuracy of non-compensated encoder | ±30.08 µm | ±2.20 µm | ±37.74 µm | ±75.09 µm |
Maximal error value (Compensated encoder) | 0.57 µm | 1.10 µm | 2.51 µm | 3.26 µm |
Minimal error value (Compensated encoder) | −2.48 µm | −1.07 µm | −0.73 µm | 0.64 µm |
Average accuracy of compensated encoder | ±1.52 µm | ±1.08 µm | ±1.62 µm | ±1.95 µm |
Parameter | Ambient Temperature | ||
---|---|---|---|
17.8 °C | 22.6 °C | 25.3 °C | |
Accuracy of approximating function (by mean of standard deviation) | ±0.69 µm | ±0.67 µm | ±0.65 µm |
Std. dev. of ~96% measurements (Std. dev. multiplied by 2.1) | ±1.45 µm | ±1.41 µm | ±1.35 µm |
Maximal error value (Compensated encoder) | 0.95 µm | 1.88 µm | 1.92 µm |
Minimal error value (Compensated encoder) | −1.89 µm | −1.04 µm | −1.04 µm |
Compensated encoder accuracy | ±1.42 µm | ±1.46 µm | ±1.48 µm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurauskis, D.; Kilikevičius, A.; Kasparaitis, A. Thermal and Geometric Error Compensation Approach for an Optical Linear Encoder. Sensors 2021, 21, 360. https://doi.org/10.3390/s21020360
Gurauskis D, Kilikevičius A, Kasparaitis A. Thermal and Geometric Error Compensation Approach for an Optical Linear Encoder. Sensors. 2021; 21(2):360. https://doi.org/10.3390/s21020360
Chicago/Turabian StyleGurauskis, Donatas, Artūras Kilikevičius, and Albinas Kasparaitis. 2021. "Thermal and Geometric Error Compensation Approach for an Optical Linear Encoder" Sensors 21, no. 2: 360. https://doi.org/10.3390/s21020360
APA StyleGurauskis, D., Kilikevičius, A., & Kasparaitis, A. (2021). Thermal and Geometric Error Compensation Approach for an Optical Linear Encoder. Sensors, 21(2), 360. https://doi.org/10.3390/s21020360