A Comparison of Various Algorithms for Classification of Food Scents Measured with an Ion Mobility Spectrometry
Abstract
:1. Introduction
2. IMS Fingerprint-Based Classification
2.1. Nearest Neighbour Classification
2.2. Quadratic Discriminant Analysis
2.3. Artificial Neural Network
- Each neuron has an activation function. The activation function defines the output of a neuron.
- A network has one or more layers, which are hidden from both input and output layers.
- There is a high level of connectivity between neurons.
2.4. C-Support Vector Classification
2.5. Principal Component Analyses
- Calculate d-dimensional mean vector and d-by-d dimensions covariance matrix for training data set .
- Eigenvectors and eigenvalues of are calculated and sorted according to decreasing eigenvalues.
- A subset of these eigenvalues is chosen, for instance, the first m eigenvalues form d-by-m matrix (m eigenvectors as columns of ).
- PCA-transformed data is defined as , where each has m variables.
2.6. Cross Validation
3. Data
4. Experiments
4.1. Nearest Neighbour Using Euclidean Distance
4.2. Nearest Neighbour Using Alternative Distance Measures
4.3. Artificial Neural Network
- MLP with single layer ranging from to
- MLP with two layers ranging from to .
- MLP with three layers was tested with layers , , , , , , , , and
- MLP with four layers was tested with layers , , , , , , , , and
- MLP with five layers was tested with layers , , , , , , , , and
- MLP with six layers had layer sizes
- MLP with seven layers had layer sizes
4.4. C-Support Vector Classification
4.5. Quadratic Discriminant Analysis
4.6. Other Classifiers
- Gradient Boosting Classifier with 100 estimators, a learning rate of , and a maximal depth from 1 to 10
- Random Forest Classifier with a maximal depth ranging from 1 to 190, number of estimators from 10 to 190, and maximal features from 1 to 14
- Decision Tree Classifier with maximal depths ranging from 1 to 10
- SGD Classifier
- SVC with max iterations set to , kernels “linear” and “rbf”, C = 0.025, gamma = 2, C = 1
- Perceptron
- Passive Aggressive Classifier
- Ada Boost Classifier
- Quadratic Discriminant Analysis
- Gaussian NB
- NearestCentroid
- Bernoulli NB with = 0.1
- Lasso with maximal iterations set to 1,000,000, = 0.1
- LassoLars with = 0.1 and maximal iterations set to 1,000,000
- Orthogonal Matching Pursuit
- Orthogonal Matching Pursuit CV
- PLS Regression with Number of components to keep 1, 2 and 3
5. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kiani, S.; Minaei, S.; Ghasemi-Varnamkhasti, M. Application of electronic nose systems for assessing quality of medicinal and aromatic plant products: A review. J. Appl. Res. Med. Aromat. Plants 2016, 3, 1–9. [Google Scholar] [CrossRef]
- Wilson, A.D.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Mesa, M.; Escourrou, A.; Monteau, F.; Le Bizec, B.; Dervilly-Pinel, G. Current applications and perspectives of ion mobility spectrometry to answer chemical food safety issues. TrAC Trends Anal. Chem. 2017, 94, 39–53. [Google Scholar] [CrossRef]
- Armenta, S.; Alcala, M.; Blanco, M. A review of recent, unconventional applications of ion mobility spectrometry (IMS). Anal. Chim. Acta 2011, 703, 114–123. [Google Scholar] [CrossRef]
- Kafle, G.K.; Khot, L.R.; Sankaran, S.; Bahlol, H.Y.; Tufariello, J.A.; Hill, H.H., Jr. State of ion mobility spectrometry and applications in agriculture: A review. Eng. Agric. Environ. Food 2016, 9, 346–357. [Google Scholar]
- Müller, P.; Salminen, K.; Nieminen, V.; Kontunen, A.; Karjalainen, M.; Isokoski, P.; Rantala, J.; Savia, M.; Väliaho, J.; Kallio, P.; et al. Scent Classification by K Nearest Neighbors using Ion-Mobility Spectrometry Measurements. Expert Syst. Appl. 2018, 115. [Google Scholar] [CrossRef]
- Mamat, M.; Samad, S.; Hannan, M.A. An Electronic Nose for Reliable Measurement and Correct Classification of Beverages. Sensors 2011, 11, 6435–6453. [Google Scholar] [CrossRef] [Green Version]
- Martín, Y.; Oliveros, M.; Pérez-Pavón, J.L.; García Pinto, C.; Cordero, B. Electronic nose based on metal oxide semiconductor sensors and pattern recognition techniques: Characterisation of vegetable oils. Anal. Chim. Acta 2001, 449, 69–80. [Google Scholar] [CrossRef]
- Seregély, Z.; Novák, I. Evaluation of the signal response of the electronic nose measured on oregano and lovage samples using different methods of multivariate analysis. Acta Aliment. 2005, 34, 131–139. [Google Scholar] [CrossRef]
- Zheng, S.; Ren, W.; Huang, L. Geoherbalism evaluation of Radix Angelica sinensis based on electronic nose. J. Pharm. Biomed. Anal. 2015, 105. [Google Scholar] [CrossRef]
- Lin, H.; Yan, Y.; Zhao, T.; Peng, L.; Zou, H.; Li, J.; Yang, X.; Xiong, Y.; Wang, M.; Wu, H. Rapid discrimination of Apiaceae plants by electronic nose coupled with multivariate statistical analyses. J. Pharm. Biomed. Anal. 2013, 84C, 1–4. [Google Scholar] [CrossRef]
- Yang, Z.; Dong, F.; Shimizu, K.; Kinoshita, T.; Kanamori, M.; Morita, A.; Watanabe, N. Identification of coumarin-enriched Japanese green teas and their particular flavor using electronic nose. J. Food Eng. 2009, 92, 312–316. [Google Scholar] [CrossRef] [Green Version]
- Längkvist, M.; Coradeschi, S.; Loutfi, A.; Rayappan, J.B.B. Fast Classification of Meat Spoilage Markers Using Nanostructured ZnO Thin Films and Unsupervised Feature Learning. Sensors 2013, 13, 1578–1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Hines, E.; Gardner, J. Fuzzy Neural Computing of Coffee and Tainted Water Data from an Electronic Nose. Sensors Actuators B Chem. 1999, 30, 185–190. [Google Scholar] [CrossRef]
- Zhang, L.; Tian, F. Performance Study of Multilayer Perceptrons in a Low-Cost Electronic Nose. IEEE Trans. Instrum. Meas. 2014, 63, 1670–1679. [Google Scholar] [CrossRef]
- Márquez-Sillero, I.; Aguilera, E.; Cárdenas, S.; Valcárcel, M. Ion-mobility spectrometry for environmental analysis. TrAC Trends Anal. Chem. 2011, 30, 677–690. [Google Scholar] [CrossRef]
- Szymańska, E.; Davies, A.; Buydens, L. Chemometrics for ion mobility spectrometry data: Recent advances and future prospects. Analyst 2016, 141. [Google Scholar] [CrossRef] [Green Version]
- Gałuszka, A.; Migaszewski, Z.; Namieśnik, J. Review. Moving your laboratories to the field—Advantages and limitations of the use of field portable instruments in environmental sample analysis. Environ. Res. 2015, 140, 593–603. [Google Scholar] [CrossRef]
- Minaev, G.; Müller, P.; Visa, A.; Piché, R. Indoor Localisation using Aroma Fingerprints: Comparing Nearest Neighbour Classification Accuracy using Different Distance Measures. In Proceedings of the 7th International Conference on Systems and Control (ICSC), Valencia, Spain, 24–26 October 2018; pp. 397–402. [Google Scholar] [CrossRef]
- Müller, P.; Lekkala, J.; Ali-Löytty, S.; Piché, R. Indoor Localisation using Aroma Fingerprints: A First Sniff. In Proceedings of the 14th Workshop on Positioning, Navigation and Communications (WPNC), Bremen, Germany, 25–26 October 2017. [Google Scholar] [CrossRef]
- Asbury, G.; Klasmeier, J.; Hill, H. Analysis of explosives using electrospray ionization/ion mobility spectrometry (ESI/IMS). Talanta 2000, 50, 1291–1298. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Sun, B. Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC–IMS). Food Chem. 2020, 315, 126158. [Google Scholar] [CrossRef]
- He, W.; Ren, F.; Wang, Y.; Gao, X.; Wang, X.; Dai, X.; Song, J. Application of GC-IMS in Detection of Food Flavor Substances. IOP Conf. Ser. Earth Environ. Sci. 2020, 545, 012030. [Google Scholar] [CrossRef]
- Li, M.; Yang, R.; Zhang, H.; Wang, S.; Chen, D.; Lin, S. Development of a flavor fingerprint by HS-GC–IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chem. 2019, 290, 32–39. [Google Scholar] [CrossRef] [PubMed]
- del Mar Contreras, M.; Arroyo-Manzanares, N.; Arce, C.; Arce, L. HS-GC-IMS and chemometric data treatment for food authenticity assessment: Olive oil mapping and classification through two different devices as an example. Food Control 2019, 98, 82–93. [Google Scholar] [CrossRef]
- Müller, P.; Salminen, K.; Nieminen, V.; Kontunen, A.; Karjalainen, M.; Isokoski, P.; Rantala, J.; Savia, M.; Väliaho, J.; Kallio, P.; et al. Dataset for Müller et al.—Scent Classification by K Nearest Neighbors Using Ion-Mobility Spectrometry. Available online: http://urn.fi/urn:nbn:fi:csc-kata20180418151056882791 (accessed on 5 May 2020).
- Müller, P.; Salminen, K.; Kontunen, A.; Karjalainen, M.; Isokoski, P.; Rantala, J.; Leivo, J.; Väliaho, J.; Kallio, P.; Lekkala, J.; et al. Online Scent Classification by Ion-Mobility Spectrometry Sequences. Front. Appl. Math. Stat. 2019, 5. [Google Scholar] [CrossRef] [Green Version]
- Isokoski, P.; Salminen, K.; Müller, P.; Rantala, J.; Nieminen, V.; Karjalainen, M.; Valiaho, J.; Kontunen, A.; Savia, M.; Leivo, J.; et al. Transferring Scents over a Communication Network. In Proceedings of the 23rd International Conference on Academic Mindtrek, Tampere, Finland, 29–30 January 2020; pp. 126–133. [Google Scholar] [CrossRef]
- Yang, J.; Sun, Z.; Chen, Y. Fault Detection Using the Clustering-k-NN Rule for Gas Sensor Arrays. Sensors 2016, 16, 2069. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Ye, W.; Zhao, X.; Pan, X.; Cao, Y. Classification of Data from Electronic Nose Using Gradient Tree Boosting Algorithm. Sensors 2017, 17, 2376. [Google Scholar] [CrossRef] [Green Version]
- Minaev, G.; Visa, A.; Piché, R. Comprehensive survey of similarity measures for ranked based location fingerprinting algorithm. In Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan, 18–21 September 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Bentley, J.L. Multidimensional Binary Search Trees Used for Associative Searching. Commun. ACM 1975, 18, 509–517. [Google Scholar] [CrossRef]
- Ghojogh, B.; Crowley, M. Linear and Quadratic Discriminant Analysis: Tutorial. Available online: https://arxiv.org/abs/1906.02590 (accessed on 6 January 2021).
- Haykin, S. Neural Networks and Learning Machines, 3rd ed.; Pearson Education: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Sohl-Dickstein, J.; Poole, B.; Ganguli, S. Fast large-scale optimization by unifying stochastic gradient and quasi-Newton methods. In Proceedings of the 31st International Conference on Machine Learning, Beijing, China, 21–26 June 2014; Volume 32, pp. 604–612. [Google Scholar]
- Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011. [Google Scholar] [CrossRef]
- Duda, R.; Hart, P.; Stork, G.D. Pattern Classification; Wiley Interscience: Hoboken, NJ, USA, 2001. [Google Scholar]
- Berrar, D. Cross-Validation. Encycl. Bioinform. Comput. Biol. 2019, 1, 542–545. [Google Scholar] [CrossRef]
- ChemPro100i Handheld Chemical Detector. Available online: https://www.environics.fi/product/chempro100i/ (accessed on 17 August 2020).
- Minaev, G.; Piché, R.; Visa, A. Distance Measures for Classification of Numerical Features. Available online: http://urn.fi/URN:NBN:fi:tuni-202012168900 (accessed on 6 January 2021).
- Deza, M.; Deza, E. Encyclopedia of Distances, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Cha, S.H. Comprehensive Survey on Distance/Similarity Measures Between Probability Density Functions. Int. J. Math. Model. Methods Appl. Sci. 2007, 1, 300–307. [Google Scholar]
- Baldwin, E.; Bai, J.; Plotto, A.; Dea, S. Electronic Noses and Tongues: Applications for the Food and Pharmaceutical Industries. Sensors 2011, 11, 4744–4766. [Google Scholar] [CrossRef] [PubMed]
- Karpas, Z. Applications of ion mobility spectrometry (IMS) in the field of foodomics. Food Res. Int. 2013, 54, 1146–1151. [Google Scholar] [CrossRef]
- Hernández-Mesa, M.; Ropartz, D.; García-Campana, A.M.; Rogniaux, H.; Dervilly-Pinel, G.; Le Bizec, B. Ion Mobility Spectrometry in Food Analysis: Principles, Current Applications and Future Trends. Molecules 2019, 24, 2706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ID | Name | Raw Fit Time | Raw Predict Time | Raw | PCA | PCA |
---|---|---|---|---|---|---|
1. | Euclidean | 1 | 1 | |||
30. | Canberra | 18.885 | 189.334 | |||
38. | Clark | 24.838 | 293.959 | |||
54. | Divergence | 21.615 | 127.758 | |||
60. | Vicis-Symmetric | 20.841 | 130.258 | |||
Quadratic Discriminant Analysis | 0.103 | 0.014 | 1.004 | |||
SVC | 4.894 | 0.561 | ||||
MLPClassifier hidden layer size 58 | 1719.458 | 0.045 | ||||
MLPClassifier hidden layer size 63 |
ID | Name | Source | |
---|---|---|---|
1. | Euclidean | [41] chapter 17.2 | |
30. | Canberra | [41] chapter 17.1 | |
38. | Clark | [41] chapter 17.1 | |
54. | Divergence | [42] | |
60. | Vicis-Symmetric 1 | [42] |
Size | Fit Time | Predict Time | Misclassification Rate |
---|---|---|---|
40 | |||
41 | |||
42 | |||
54 | |||
55 | |||
56 | |||
57 | |||
71 | |||
72 | |||
73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minaev, G.; Müller, P.; Salminen, K.; Rantala, J.; Surakka, V.; Visa, A. A Comparison of Various Algorithms for Classification of Food Scents Measured with an Ion Mobility Spectrometry. Sensors 2021, 21, 361. https://doi.org/10.3390/s21020361
Minaev G, Müller P, Salminen K, Rantala J, Surakka V, Visa A. A Comparison of Various Algorithms for Classification of Food Scents Measured with an Ion Mobility Spectrometry. Sensors. 2021; 21(2):361. https://doi.org/10.3390/s21020361
Chicago/Turabian StyleMinaev, Georgy, Philipp Müller, Katri Salminen, Jussi Rantala, Veikko Surakka, and Ari Visa. 2021. "A Comparison of Various Algorithms for Classification of Food Scents Measured with an Ion Mobility Spectrometry" Sensors 21, no. 2: 361. https://doi.org/10.3390/s21020361
APA StyleMinaev, G., Müller, P., Salminen, K., Rantala, J., Surakka, V., & Visa, A. (2021). A Comparison of Various Algorithms for Classification of Food Scents Measured with an Ion Mobility Spectrometry. Sensors, 21(2), 361. https://doi.org/10.3390/s21020361