Determining Sonication Effect on E. coli in Liquid Egg, Egg Yolk and Albumen and Inspecting Structural Property Changes by Near-Infrared Spectra
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Ultrasonic Treatment
- -
- for microbiological measurements 180 mL of the samples were poured into a 200 mL glass container after homogenization.
- -
- for NIR measurements 18 mL of the samples were diluted with 162 mL of distilled water in order to obtain 10% (w/w) emulsions. We used the diluted samples in order to evaluate the NIR spectra from an aquaphotomics point of view, as in the case of aquaphotomics it is a common method to use solutions of water and samples [29,30].
2.3. Preparation of Artificial Inoculation
2.4. Near-Infrared Measurements
2.5. Data Analysis
3. Results
3.1. Microbiological Measurements
3.2. Results of the Near-Infrared (NIR) Measurements
3.3. Linear Discriminant Analysis
4. Discussion
4.1. Microbiological Measurements
4.2. NIR Measurements
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.-F.; Oey, I.; Bremer, P.; Carne, A.; Silcock, P. Modifying the Functional Properties of Egg Proteins Using Novel Processing Techniques: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 986–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Ma, Y.; Ma, Z.; Du, Q.; Zhao, Y.; Chi, Y. Changes in gelation, aggregation and intermolecular forces in frozen-thawed egg yolks during freezing. Food Hydrocoll. 2020, 108. [Google Scholar] [CrossRef]
- Anton, M. Egg yolk: Structures, functionalities and processes. J. Sci. Food Agric. 2013, 93, 2871–2880. [Google Scholar] [CrossRef] [PubMed]
- Arzeni, C.; Perez, O.E.; Pilosof, A.M.R. Power Ultrasound Assisted Design of Egg Albumin Nanoparticles. Food Biophys. 2015, 10, 439–446. [Google Scholar] [CrossRef]
- Hammershoj, M.; Larsen, L.B.; Andersen, A.B.; Qvist, K.B. Storage of shell eggs influences the albumen gelling properties. LWT Food Sci. Technol. 2002, 35, 62–69. [Google Scholar] [CrossRef]
- Jun, S.; Yaoyao, M.; Hui, J.; Obadi, M.; Zhongwei, C.; Bin, X. Effects of single- and dual-frequency ultrasound on the functionality of egg white protein. J. Food Eng. 2020, 277. [Google Scholar] [CrossRef]
- Karoui, R.; De Ketelaere, B.; Kemps, B.; Bamelis, F.; Mertens, K.; De Baerdemaeker, J. Chapter 15—Eggs and Egg Products. In Infrared Spectroscopy for Food Quality Analysis and Control; Sun, D.-W., Ed.; Academic Press: San Diego, CA, USA, 2009; pp. 399–414. [Google Scholar]
- Monfort, S.; Manas, P.; Condon, S.; Raso, J.; Alvarez, I. Physicochemical and functional properties of liquid whole egg treated by the application of Pulsed Electric Fields followed by heat in the presence of triethyl citrate. Food Res. Int. 2012, 48, 484–490. [Google Scholar] [CrossRef]
- Chandrapala, J.; Zisu, B.; Palmer, M.; Kentish, S.; Ashokkumar, M. Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrason. Sonochem. 2011, 18, 951–957. [Google Scholar] [CrossRef]
- Bell, C.; Kyriakides, A. Pathogenic Escherichia coli. In Foodborne Pathogens: Hazards, Risk Analysis And Control, 2nd ed.; Blackburn, C.W., McClure, P.J., Eds.; Woodhead Publishing Series in Food Science Technology and Nutrition: Cambridge, UK, 2009; pp. 581–626. [Google Scholar]
- Punidadas, P.; McKellar, R.C. Selected physical properties of liquid egg products at pasteurization temperatures. J. Food Process. Preserv. 1999, 23, 153–169. [Google Scholar] [CrossRef]
- Afraz, M.T.; Khan, M.R.; Roobab, U.; Noranizan, M.A.; Tiwari, B.K.; Rashid, M.T.; Inam-ur-Raheem, M.; Hashemi, S.M.B.; Aadil, R.M. Impact of novel processing techniques on the functional properties of egg products and derivatives: A review. J. Food Process Eng. 2020, 43. [Google Scholar] [CrossRef]
- Fernández-Martin, F.; Fernández, P.; Carballo, J.; Colmenero, F.J. Pressure/heat combinations on pork meat batters: Protein thermal behavior and product rheological properties. J. Agric. Food Chem. 1997, 45, 4440–4445. [Google Scholar] [CrossRef] [Green Version]
- Paniagua-Martinez, I.; Ramirez-Martinez, A.; Serment-Moreno, V.; Rodrigues, S.; Ozuna, C. Non-thermal Technologies as Alternative Methods for Saccharomyces cerevisiae Inactivation in Liquid Media: A Review. Food Bioprocess Technol. 2018, 11, 487–510. [Google Scholar] [CrossRef]
- Lee, D.-U. Effects of Combination Treatments of Nisin and High-intensity Ultrasound with High Pressure on the Functional Properties of Liquid Whole Egg. Food Sci. Biotechnol. 2009, 18, 1511–1514. [Google Scholar]
- Huang, E.; Mittal, G.S.; Griffiths, M.W. Inactivation of Salmonella enteritidis in liquid whole egg using combination treatments of pulsed electric field, high pressure and ultrasound. Biosyst. Eng. 2006, 94, 403–413. [Google Scholar] [CrossRef]
- Gómez-Sánchez, D.L.; Antonio-Gutiérrez, O.; López-Díaz, A.S.; Palou, E.; López-Malo, A.; Ramirez-Corona, N. Performance of combined technologies for the inactivation of Saccharomyces cerevisiae and Escherichia coli in pomegranate juice: The effects of a continuous-flow UV-Microwave system. J. Food Process Eng. 2020, 43. [Google Scholar] [CrossRef]
- Huang, G.; Chen, S.; Dai, C.; Sun, L.; Sun, W.; Tang, Y.; Xiong, F.; He, R.; Ma, H. Effects of ultrasound on microbial growth and enzyme activity. Ultrason. Sonochem. 2017, 37, 144–149. [Google Scholar] [CrossRef]
- Kentish, S.; Feng, H. Applications of Power Ultrasound in Food Processing. Annu. Rev. Food Sci. Technol. 2014, 5, 263–284. [Google Scholar] [CrossRef]
- Kaya, A.; Keceli, A.S.; Catal, C.; Tekinerdogan, B. Sensor Failure Tolerable Machine Learning-Based Food Quality Prediction Model. Sensors 2020, 20, 3173. [Google Scholar] [CrossRef]
- Peris, M.; Escuder-Gilabert, L. A 21st century technique for food control: Electronic noses. Anal. Chim. Acta 2009, 638, 1–15. [Google Scholar] [CrossRef]
- Awad, T.S.; Moharram, H.A.; Shaltout, O.E.; Asker, D.; Youssef, M.M. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res. Int. 2012, 48, 410–427. [Google Scholar] [CrossRef]
- Moon, E.J.; Kim, Y.; Xu, Y.; Na, Y.; Giaccia, A.J.; Lee, J.H. Evaluation of Salmon, Tuna, and Beef Freshness Using a Portable Spectrometer. Sensors 2020, 20, 4299. [Google Scholar] [CrossRef] [PubMed]
- Curto, B.; Moreno, V.; Garcia-Esteban, J.A.; Javier Blanco, F.; Gonzalez, I.; Vivar, A.; Revilla, I. Accurate Prediction of Sensory Attributes of Cheese Using Near-Infrared Spectroscopy Based on Artificial Neural Network. Sensors 2020, 20, 3566. [Google Scholar] [CrossRef] [PubMed]
- Hassoun, A.; Carpena, M.; Prieto, M.A.; Simal-Gandara, J.; Özogul, F.; Özogul, Y.; Özlem, E.C.; Gudjónsdóttir, M.; Barba, F.J.; Marti-Quijal, F.J.; et al. Use of Spectroscopic Techniques to Monitor Changes in Food Quality during Application of Natural Preservatives: A Review. Antioxidants 2020, 9, 882. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liu, L.; Ngadi, M.O. Recent Developments in Hyperspectral Imaging for Assessment of Food Quality and Safety. Sensors 2014, 14, 7248–7276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco, M.; Villarroya, I. NIR spectroscopy: A rapid-response analytical tool. TrAC Trends Anal. Chem. 2002, 21, 240–250. [Google Scholar] [CrossRef]
- Chen, H.; Tan, C.; Lin, Z. Non-destructive identification of native egg by near-infrared spectroscopy and data driven-based class-modeling. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 206, 484–490. [Google Scholar] [CrossRef]
- Bázár, G.; Kovacs, Z.; Tanaka, M.; Furukawa, A.; Nagai, A.; Osawa, M.; Itakura, Y.; Sugiyama, H.; Tsenkova, R. Water revealed as molecular mirror when measuring low concentrations of sugar with near infrared light. Anal. Chim. Acta 2015, 896, 52–62. [Google Scholar] [CrossRef]
- Kovacs, Z.; Pollner, B.; Bazar, G.; Muncan, J.; Tsenkova, R. A Novel Tool for Visualization of Water Molecular Structure and Its Changes, Expressed on the Scale of Temperature Influence. Molecules 2020, 25, 2234. [Google Scholar] [CrossRef]
- Tiwari, B.K.; Mason, T.J. Ultrasound Processing of Fluid Foods. In Novel Thermal and Non-Thermal Technologies for Fluid Foods; Cullen, P.J., Tiwari, B.K., Valdramidis, V.P., Eds.; Academic Press: Cambridge, MA, USA, 2012; pp. 135–165. [Google Scholar]
- Barbin, D.F.; Badaro, A.T.; Honorato, D.C.B.; Ida, E.Y.; Shimokomaki, M. Identification of turkey meat and processed products using near infrared spectroscopy. Food Control 2020, 107. [Google Scholar] [CrossRef]
- Muncan, J.; Tsenkova, R. Aquaphotomics-From Innovative Knowledge to Integrative Platform in Science and Technology. Molecules 2019, 24, 2742. [Google Scholar] [CrossRef] [Green Version]
- Tsenkova, R. Introduction Aquaphotomics: Dynamic spectroscopy of aqueous and biological systems describes peculiarities of water. J. Near Infrared Spectrosc. 2009, 17, 303–313. [Google Scholar] [CrossRef]
- Kovacs, Z.; Pollner, B. Aquaphotomics-Software R-Package “aquap2“. In Proceedings of the Understanding Water in Biology 2nd International Symposium, Kobe, Japan, 26 November 2016; pp. 26–29. [Google Scholar]
- Inguglia, E.S.; Tiwari, B.K.; Kerry, J.P.; Burgess, C.M. Effects of high intensity ultrasound on the inactivation profiles of Escherichia coli K12 and Listeria innocua with salt and salt replacers. Ultrason. Sonochem. 2018, 48, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Bourke, P.; Kelly, B.; Frias, J.M.; Cullen, P.J. The effects of acid adaptation on Escherichia coli inactivation using power ultrasound. Innov. Food Sci. Emerg. Technol. 2009, 10, 486–490. [Google Scholar] [CrossRef] [Green Version]
- De Sao Jose, J.F.; de Medeiros, H.S.; Bernardes, P.C.; de Andrade, N.J. Removal of Salmonella enterica Enteritidis and Escherichia coli from green peppers and melons by ultrasound and organic acids. Int. J. Food Microbiol. 2014, 190, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Kang, D.; Jiang, Y.; Xing, L.; Zhou, G.; Zhang, W. Inactivation of Escherichia coli O157:H7 and Bacillus cereus by power ultrasound during the curing processing in brining liquid and beef. Food Res. Int. 2017, 102, 717–727. [Google Scholar] [CrossRef]
- Mayo, D.W.; Miller, F.A.; Hannah, R.W. Course Notes on the Interpretation of Infrared and Raman Spectra; John Wiley and Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Szigedi, T. Módszerfejlesztés Fourier-Transzformációs Közeli Infravörös Technika (FT-NIR) Alkalmazási Körének Kibővítése Élelmiszeripari Mintákon. Ph.D. Thesis, Corvinus University Budapest, Budapest, Hungary, 2014. [Google Scholar]
- Stefanović, A.B.; Jovanović, J.R.; Dojčinović, M.B.; Lević, S.M.; Nedović, V.A.; Bugarski, B.M.; Knežević-Jugović, Z.D. Effect of the Controlled High-Intensity Ultrasound on Improving Functionality and Structural Changes of Egg White Proteins. Food Bioprocess Technol. 2017, 10, 1224–1239. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, J.; Wang, Y.; Wu, D.; Liang, D.; Ye, H.; Cai, Z.; Ma, M.; Geng, F. Effects of high-intensity ultrasonic (HIU) treatment on the functional properties and assemblage structure of egg yolk. Ultrason. Sonochem. 2020, 60. [Google Scholar] [CrossRef]
- Jovanović, J.R.; Stefanović, A.B.; Sekuljica, N.Z.; Jakovetić Tanasković, S.M.; Dojčinović, M.B.; Bugarski, B.M.; Knežević-Jugović, Z.D. Ultrasound Pretreatment as an Useful Tool to Enhance Egg White Protein Hydrolysis: Kinetics, Reaction Model, and Thermodinamics. J. Food Sci. 2016, 81, C2664–C2675. [Google Scholar] [CrossRef]
Group | Frequency | Slope of the Model (log CFU/kJ) | SD of the Slope | F Value | R2 Values |
---|---|---|---|---|---|
Albumen | 20 kHz | −0.018 | 0.002 | 55.238 | 0.7152 |
Albumen | 40 kHz | −0.025 | 0.003 | 58.093 | 0.7253 |
Yolk | 20 kHz | −0.015 | 0.004 | 18.486 | 0.5322 |
Yolk | 40 kHz | −0.021 | 0.003 | 42.844 | 0.6607 |
Liquid egg | 20 kHz | −0.021 | 0.002 | 120.311 | 0.8454 |
Liquid egg | 40 kHz | −0.024 | 0.003 | 86.761 | 0.7997 |
Egg Product | Treatment Setup | Wavelengths | |||
---|---|---|---|---|---|
C–N | C–C | –OH | N–H | ||
Albumen | 20 kHz, 3.7 W | 1074 | 1194 | 1407, 1482, 1512 | 1620 |
20 kHz, 6.9 W | 1052, 1100 | - | 1412, 1508 | 1554 | |
40 kHz, 3.7 W | 1078 | 1184 | 1384, 1462, 1512, 1548 | - | |
40 kHz, 6.9 W | 1066 | - | 1342, 1412, 1440, 1513 | 1560 | |
Yolk | 20 kHz, 3.7 W | - | 1214 | 1504 | 1660 |
20 kHz, 6.9 W | 1026, 1070 | - | 1374, 1502 | - | |
40 kHz, 3.7 W | 1066 | 1206 | 1462, 1504 | - | |
40 kHz, 6.9 W | 1060 | 1206 | 1384, 1452, 1534 | - | |
Liquid egg | 20 kHz, 3.7 W | 1058, 1158 | - | 1374, 1426, 1488, 1546 | - |
20 kHz, 6.9 W | 1051, 1156 | 1208 | 1398, 1476, 1548 | - | |
40 kHz, 3.7 W | 1060 | - | 1412, 1520 | 1616 | |
40 kHz, 6.9 W | 1056 | 1210 | 1406,1492,1544 | - |
Group | Treatment | Recognition | Prediction |
---|---|---|---|
Albumen | A | 93.97% | 83.33% |
Yolk | A | 87.29% | 79.61% |
Liquid egg | A | 75.57% | 64.04% |
Albumen | B | 100.0% | 92.13% |
Yolk | B | 68.61% | 66.35% |
Liquid egg | B | 90.80% | 55.67% |
Albumen | C | 96.86% | 86.07% |
Yolk | C | 90.09% | 92.77% |
Liquid egg | C | 100.0% | 88.38% |
Albumen | D | 89.03% | 86.67% |
Yolk | D | 91.39% | 61.46% |
Liquid egg | D | 91.40% | 61.47% |
Albumen | ||||||||
Prediction(%) | Validation(%) | |||||||
Treatment A | 0 min | 30 min | 45 min | 60 min | 0 min | 30 min | 45 min | 60 min |
0 min | 100 | 0 | 0 | 0 | 100 | 16.75 | 0 | 0 |
30 min | 0 | 100 | 0 | 0 | 0 | 58.25 | 0 | 0 |
45 min | 0 | 0 | 97.75 | 21.86 | 0 | 8.25 | 100 | 24.95 |
60 min | 0 | 0 | 2.25 | 78.14 | 0 | 16.75 | 0 | 75.05 |
Treatment B | 0 min | 30 min | 45 min | 60 min | 0 min | 30 min | 45 min | 60 min |
0 min | 100 | 0 | 0 | 0 | 100 | 0 | 21.04 | 0 |
30 min | 0 | 100 | 0 | 0 | 0 | 100 | 5.22 | 0 |
45 min | 0 | 0 | 100 | 0 | 0 | 0 | 68.51 | 0 |
60 min | 0 | 0 | 0 | 100 | 0 | 0 | 5.22 | 100 |
Treatment C | 0 min | 30 min | 45 min | 60 min | 0 min | 30 min | 45 min | 60 min |
0 min | 100 | 12.55 | 0 | 0 | 100 | 16.75 | 0 | 0 |
30 min | 0 | 87.45 | 0 | 0 | 0 | 58.25 | 0 | 0 |
45 min | 0 | 0 | 100 | 0 | 0 | 8.25 | 100 | 24.95 |
60 min | 0 | 0 | 0 | 100 | 0 | 16.75 | 0 | 75.05 |
Treatment D | 0 min | 30 min | 45 min | 60 min | 0 min | 30 min | 45 min | 60 min |
0 min | 83.38 | 9.14 | 0 | 0 | 83.25 | 8.99 | 0 | 0 |
30 min | 16.62 | 72.71 | 0 | 0 | 16.75 | 72.75 | 0 | 0 |
45 min | 0 | 0 | 100 | 0 | 0 | 0 | 94.79 | 4.12 |
60 min | 0 | 18.14 | 0 | 100 | 0 | 18.26 | 5.21 | 95.88 |
Yolk | ||||||||
Prediction(%) | Validation(%) | |||||||
Treatment A | 0 min | 30 min | 45 min | 60 min | 0 min | 30 min | 45 min | 60 min |
0 min | 79.12 | 19.94 | 0 | 0 | 75.00 | 30.03 | 0 | 0 |
30 min | 20.88 | 70.01 | 0 | 0 | 25.00 | 60.06 | 16.62 | 0 |
45 min | 0 | 10.04 | 100 | 0 | 0 | 9.91 | 83.38 | 0 |
60 min | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 |
Treatment B | 0 min | 30 min | 45 min | 60 min | 0 min | 30 min | 45 min | 60 min |
0 min | 50 | 25 | 28.57 | 0 | 58.25 | 41.75 | 28.57 | 0 |
30 min | 33.38 | 62.5 | 9.5 | 0 | 25 | 50.00 | 14.29 | 0 |
45 min | 16.62 | 12.5 | 61.93 | 0 | 16.75 | 8.25 | 57.14 | 0 |
60 min | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 |
Treatment C | 0 min | 30 min | 45 min | 60 min | 0 min | 30 min | 45 min | 60 min |
0 min | 91.62 | 31.27 | 0 | 0 | 91.75 | 12.41 | 8.25 | 0 |
30 min | 8.38 | 68.73 | 0 | 0 | 8.25 | 87.59 | 0 | 0 |
45 min | 0 | 0 | 100 | 0 | 0 | 0 | 91.75 | 0 |
60 min | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 |
Treatment D | 0 min | 30 min | 45 min | 60 min | 0 min | 30 min | 45 min | 60 min |
0 min | 81.86 | 9.13 | 7.14 | 0 | 63.66 | 27.32 | 33.29 | 0 |
30 min | 13.64 | 90.87 | 0 | 0 | 9.02 | 63.66 | 28.57 | 10.04 |
45 min | 4.5 | 0 | 92.86 | 0 | 27.32 | 9.02 | 28.57 | 0 |
60 min | 0 | 0 | 0 | 100 | 0 | 0 | 9.57 | 89.96 |
Liquid Egg | ||||||||
Prediction (%) | Validation (%) | |||||||
Treatment A | 0 min | 30 min | 45 min | 60 min | 0 min | 30 min | 45 min | 60 min |
0 min | 75 | 54.57 | 18.14 | 0 | 83.25 | 72.75 | 9.02 | 0 |
30 min | 25 | 45.43 | 0 | 0 | 16.75 | 18.26 | 36.34 | 0 |
45 min | 0 | 0 | 81.86 | 0 | 0 | 8.99 | 54.64 | 0 |
60 min | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 |
Treatment B | 0 min | 30 min | 45 min | 60 min | 0 min | 30 min | 45 min | 60 min |
0 min | 77.83 | 4.12 | 0 | 0 | 55.67 | 16.75 | 30.38 | 0 |
30 min | 5.5 | 87.5 | 2.15 | 0 | 0 | 58.25 | 39.11 | 0 |
45 min | 16.67 | 8.38 | 97.85 | 0 | 44.33 | 25 | 8.74 | 0 |
60 min | 0 | 0 | 0 | 100 | 0 | 0 | 21.77 | 100 |
Treatment C | 0 min | 30 min | 45 min | 60 min | 0 min | 30 min | 45 min | 60 min |
0 min | 100 | 0 | 0 | 0 | 90.98 | 37.45 | 0 | 0 |
30 min | 0 | 100 | 0 | 0 | 9.02 | 62.55 | 0 | 0 |
45 min | 0 | 0 | 100 | 0 | 0 | 0 | 100 | 0 |
60 min | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 |
Treatment D | 0 min | 30 min | 45 min | 60 min | 0 min | 30 min | 45 min | 60 min |
0 min | 37.52 | 18.14 | 5.02 | 0 | 37.59 | 18.26 | 25.04 | 0 |
30 min | 0 | 31.79 | 7.5 | 0 | 12.41 | 36.24 | 14.99 | 0 |
45 min | 62.48 | 50.07 | 87.48 | 0 | 50 | 45.5 | 59.97 | 0 |
60 min | 0 | 0 | 0 | 100 | 0 | 0 | 0 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagy, D.; Felfoldi, J.; Taczmanne Bruckner, A.; Mohacsi-Farkas, C.; Bodor, Z.; Kertesz, I.; Nemeth, C.; Zsom-Muha, V. Determining Sonication Effect on E. coli in Liquid Egg, Egg Yolk and Albumen and Inspecting Structural Property Changes by Near-Infrared Spectra. Sensors 2021, 21, 398. https://doi.org/10.3390/s21020398
Nagy D, Felfoldi J, Taczmanne Bruckner A, Mohacsi-Farkas C, Bodor Z, Kertesz I, Nemeth C, Zsom-Muha V. Determining Sonication Effect on E. coli in Liquid Egg, Egg Yolk and Albumen and Inspecting Structural Property Changes by Near-Infrared Spectra. Sensors. 2021; 21(2):398. https://doi.org/10.3390/s21020398
Chicago/Turabian StyleNagy, David, Jozsef Felfoldi, Andrea Taczmanne Bruckner, Csilla Mohacsi-Farkas, Zsanett Bodor, Istvan Kertesz, Csaba Nemeth, and Viktoria Zsom-Muha. 2021. "Determining Sonication Effect on E. coli in Liquid Egg, Egg Yolk and Albumen and Inspecting Structural Property Changes by Near-Infrared Spectra" Sensors 21, no. 2: 398. https://doi.org/10.3390/s21020398
APA StyleNagy, D., Felfoldi, J., Taczmanne Bruckner, A., Mohacsi-Farkas, C., Bodor, Z., Kertesz, I., Nemeth, C., & Zsom-Muha, V. (2021). Determining Sonication Effect on E. coli in Liquid Egg, Egg Yolk and Albumen and Inspecting Structural Property Changes by Near-Infrared Spectra. Sensors, 21(2), 398. https://doi.org/10.3390/s21020398