Sensors in the Autoclave-Modelling and Implementation of the IoT Steam Sterilization Procedure Counter
Abstract
:1. Introduction
1.1. Current Issues of the Sterilization Process
1.2. State of the Art for Sterilization Process Validation
1.3. Aim of the Work
2. Materials and Methods
2.1. Prototype Design
2.1.1. Electronic Design
2.1.2. Mechanical Design
2.1.3. Preliminary Software Design
2.2. Thermal Modelling
2.2.1. Material Parameters Selection
2.2.2. Battery Modelling
2.2.3. Simulation Parameters
2.3. Simulation Validation
2.3.1. Thermistor Calibration
2.3.2. Thermistor Accuracy
2.3.3. Software Design
2.3.4. Power Consumption
2.4. Algorithm Validation
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gaynor, M.; Waterman, J. Design framework for sensors and RFID tags with healthcare applications. Health Policy Technol. 2016, 5, 357–369. [Google Scholar] [CrossRef]
- Liu, C.F.; Gu, Y.M. The research of intelligent medical devices management system based on RFID technology. In Proceedings of the 2016 International Conference on Information System and Artificial Intelligence, Hong Kong, China, 24–26 June 2016; pp. 29–33. [Google Scholar]
- Winter, S.; Smith, A.; Lappin, D.; McDonagh, G.; Kirk, B. Failure of non-vacuum steam sterilization processes for dental handpieces. J. Hosp. Infect. 2017. [Google Scholar] [CrossRef] [Green Version]
- Veiga-Malta, I. Preventing healthcare-associated infections by monitoring the cleanliness of medical devices and other critical points in a sterilization service. Biomed. Instrum. Technol. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauwers, A.W.; Kwakman, J.A.; Vos, M.C.; Bruno, M.J. Endoscope-associated infections: A brief summary of the current state and views toward the future. Tech. Gastrointest. Endosc. 2019, 21, 150608. [Google Scholar] [CrossRef]
- Panta, G.; Richardson, A.K.; Shaw, I.C.; Chambers, S.; Coope, P.A. Effectiveness of steam sterilization of reusable medical devices in primary and secondary care public hospitals in Nepal and factors associated with ineffective sterilization: A nation-wide cross-sectional study. PLoS ONE 2019, 14, e0225595. [Google Scholar] [CrossRef]
- Childers, R.W.; Henniges, B.; Hassler, W.; Blandino, T.; Jeng, D.; Morris, R.F. Sterilization Container with Battery Powered Sensor Module for Monitoring the Environment in the Container. World Patent WO 2015/138461 A1, 17 September 2015. [Google Scholar]
- Pagan, E.; Darst Rice, M.; Flint, J.; Cabrera, J. Medical Devices. World Patent WO 2019/086822 A1, 9 May 2019. [Google Scholar]
- Laranjeira, P.R.; Bronzatti, J.A.G.; de Moraes Bruna, C.Q.; de Souza, R.Q.; Graziano, K.U.; Lusignan, V. False positive results of Bowie and Dick type test used for hospital steam sterilizer with slower come-up ramps: A case study. PLoS ONE 2020, 15, e0227943. [Google Scholar] [CrossRef]
- McCormick, P.J.; Schoene, M.J.; Pedeville, D.; Kaiser, J.J.; Conyer, J. Verification testing of biological indicators for moist heat sterilization. Biomed. Instrum. Technol. 2018, 52, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Schuster, S. Medizinischer Sterilbehälter und Verfahren zum Bestimmen des Sterilisationsstatus Eines Medizinischen Sterilbehälters. German Patent DE102011054827 A1, 2 May 2013. [Google Scholar]
- Schulz, P.; Schuster, S.; Thomas, S. Sterilization Indicator For a Sterile Container. U.S. Patent US 2016/263264 A1, 15 September 2016. [Google Scholar]
- Böhler, L.; Daniol, M.; Keller, A.; Sroka, R. Heat resistant monitoring system for medical sterile containers. In Proceedings of the International Workshop on Modelling Social Media, Arlamow, Poland, 17–20 September 2019. [Google Scholar]
- George, J.; Barrett, J. A Steam Sterilizable Plastic-Encapsulated Wireless Sensor Module. IEEE Trans. Components, Packag. Manuf. Technol. 2019, 9, 770–778. [Google Scholar] [CrossRef]
- Daniol, M.; Böhler, L.; Keller, A.; Sroka, R. Autoclave sterilization powered medical IoT sensor systems. In Proceedings of the International Workshop on Modelling Social Media, Arlamow, Poland, 17–20 September 2019. [Google Scholar]
- Lech, R. Surgical Devices and Methods for Collecting Sterilization Data. U.S. Patent US 2020/297441 A1, 24 September 2020. [Google Scholar]
- Rajasekaran, M.; Yassine, A.; Hossain, M.S.; Alhamid, M.F.; Guizani, M. Autonomous monitoring in healthcare environment: Reward-based energy charging mechanism for IoMT wireless sensing nodes. Future Gener. Comput. Syst. 2019, 98, 565–576. [Google Scholar] [CrossRef]
- Miller, M.; Moaiery, A.; Dudycha, A.; Childers, R.W.; Purrenhage, B.J.; Henniges, B.; Chmelar, E.V. Sterilization Container Capable of Providing an Indication Regarding Whether or not Surgical Instruments Sterilized in the Container were Properly Sterilized. Australian Patent AU 2020/256430 A1, 12 November 2020. [Google Scholar]
- Hung, L.P.; Peng, C.J.; Chen, C.L. Using internet of things technology to improve patient safety in surgical instrument sterilization control. In Proceedings of the 11th EAI International Conference (WiCON 2018), Taipei, Taiwan, 15–16 October 2018. [Google Scholar]
- European Union. Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on medical devices, amending Directive 2001/83/EC, Regulation (EC) No 178/2002 and Regulation (EC) No 1223/2009 and repealing Council Directives 90/385/EEC and 93/42/EE; European Union: Brussels, Belgium, 2017. [Google Scholar]
- Daniol, M.; Boehler, L.; Sroka, R.; Keller, A. Modelling and Implementation of TEG-Based Energy Harvesting System for Steam Sterilization Surveillance Sensor Node. Sensors 2020, 20, 6338. [Google Scholar] [CrossRef]
- DIN EN ISO 17665-1:2006-11. Sterilisation von Produkten für die Gesundheitsfürsorge_- Feuchte Hitze_- Teil_1: Anforderungen an die Entwicklung, Validierung und Lenkung der Anwendung eines Sterilisationsverfahrens für Medizinprodukte (ISO_17665-1:2006); Deutsche Fassung EN_ISO_17665-1:2006; Beuth Verlag GmbH: Berlin, Germany, 2006. [Google Scholar] [CrossRef]
- DIN EN 285:2016-05, Sterilisation_- Dampf-Sterilisatoren_- Groß-Sterilisatoren; Deutsche Fassung EN_285:2015; Deutsche Fassung EN_ISO_17665-1:2006; Beuth Verlag GmbH: Berlin, Germany, 2016. [CrossRef]
- Attenberger, J. Anforderungen an die hygiene bei der aufbereitung von medizinprodukten. Medizintechnik 2013. [Google Scholar] [CrossRef]
- Govindaraj, S.; Muthuraman, M.S. Systematic review on sterilization methods of implants and medical devices. Int. J. Chemtech Res. 2015, 8, 897–911. [Google Scholar]
- Richter, F.; Kjelstrup, S.; Vie, P.J.; Burheim, O.S. Thermal conductivity and internal temperature profiles of Li-ion secondary batteries. J. Power Sources 2017, 359, 592–600. [Google Scholar] [CrossRef] [Green Version]
- Vishwakarma, V.; Jain, A. Measurement of in-plane thermal conductivity and heat capacity of separator in Li-ion cells using a transient DC heating method. J. Power Sources 2014, 272, 378–385. [Google Scholar] [CrossRef]
- Taheri, P.; Bahrami, M. Temperature rise in prismatic polymer lithium-ion batteries: An analytic approach. SAE Int. J. Passeng.-Cars-Electron. Electr. Syst. 2012, 5, 164–176. [Google Scholar] [CrossRef]
- Chen, S.; Wan, C.; Wang, Y. Thermal analysis of lithium-ion batteries. J. Power Sources 2005, 140, 111–124. [Google Scholar] [CrossRef]
- Liu, G.; Ouyang, M.; Lu, L.; Jianqiu, L.; Han, X. Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors. J. Therm. Anal. Calorim. 2014, 116. [Google Scholar] [CrossRef]
- Kim, U.S.; Shin, C.B.; Kim, C.S. Modelling for the scale-up of a lithium-ion polymer battery. J. Power Sources 2009, 189, 841–846. [Google Scholar] [CrossRef]
- Article Safety Data Sheet—Lithium Metal Batteries; RENATA SA: Itingen, Switzerland, 2019.
- Richter, F.; Vie, P.J.; Kjelstrup, S.; Burheim, O.S. Measurements of ageing and thermal conductivity in a secondary NMC-hard carbon Li-ion battery and the impact on internal temperature profiles. Electrochim. Acta 2017, 250, 228–237. [Google Scholar] [CrossRef]
- Hedden, M.; Francis, N.; Haraldsen, J.T.; Ahmed, T.; Constantin, C. Thermoelectric Properties of Nano-Meso-Micro β-MnO2 Powders as a Function of Electrical Resistance. Nanoscale Res. Lett. 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Tuliszka, M.; Jaroszyk, F.; Portalski, M. Absolute measurement of the thermal conductivity of propylene carbonate by the AC transient hot-wire technique. Int. J. Thermophys. 1991, 12, 791–800. [Google Scholar] [CrossRef]
- Jacob, K.T.; Kumar, A.; Rajitha, G.; Waseda, Y. Thermodynamic Data for Mn3O4, Mn2O3 and MnO2. High Temp. Mater. Process. 2011, 30. [Google Scholar] [CrossRef] [Green Version]
- Haynes, W.M. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Kozitsky, A.; Jacobi, R. Frequently Asked Questions for RF430FRL15xH Devices; Texas Instruments: Dallas, TX, USA, 2019. [Google Scholar]
Study | Sensors | Power Supply | Communication | Insulation | Focus |
---|---|---|---|---|---|
Schuster | Mech. Pressure | none | Optical Indicator | none | Sterilization detection |
Schulz et al. | Mech. Temperature | none | none | none | Sterilization detection |
Böhler et al. | Temperature | Primary Battery | BLE | Epoxy Resin /Aerogel | Sterilization detection |
George & Barrett | Temperature /Pressure | Primary Battery | 433 MHz ISM | Epoxy Resin | Sterilization detection |
Daniol et al. | none | Thermal Energy Harvesting | none | Aerogel | Power Management (sterile) |
Lech | none | Thermal Energy Harvesting | Temperature | none | Sterilization detection |
Rajasekaran et al. | Environmental Sensors | Wireless Charged Battery | RFID | none | Power Management (non-sterile) |
Miller et al. | Environmental Sensors | Rechargeable Battery | Wireless | Plastic | Sterilization detection |
Hung et al. | Temperature | no information | 2.4 GHz ISM | none | Sterilization detection |
Material | Density/kg/m | Thermal Conductivity/W/mK | Specific Heat/J/kgK |
---|---|---|---|
PEEK | 1320 | 0.2 | 1400 |
Steel | 8000 | 14.0 | 480 |
PCB | 1700 | 0.25 | 1300 |
Silicone Rubber | 1100 | 1.0 | 1300 |
Epoxy | 1400 | 0.35 | 1000 |
PET | 1100 | 0.15 | 1200 |
Aerogel | 120 | 0.027 | 1500 |
Lithium | 535 | 84.8 | 3582 |
Separator | 1000 | 0.5 | 2000 |
MnO | 5026 | 3.5 | 594 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boehler, L.; Daniol, M.; Sroka, R.; Osinski, D.; Keller, A. Sensors in the Autoclave-Modelling and Implementation of the IoT Steam Sterilization Procedure Counter. Sensors 2021, 21, 510. https://doi.org/10.3390/s21020510
Boehler L, Daniol M, Sroka R, Osinski D, Keller A. Sensors in the Autoclave-Modelling and Implementation of the IoT Steam Sterilization Procedure Counter. Sensors. 2021; 21(2):510. https://doi.org/10.3390/s21020510
Chicago/Turabian StyleBoehler, Lukas, Mateusz Daniol, Ryszard Sroka, Dominik Osinski, and Anton Keller. 2021. "Sensors in the Autoclave-Modelling and Implementation of the IoT Steam Sterilization Procedure Counter" Sensors 21, no. 2: 510. https://doi.org/10.3390/s21020510
APA StyleBoehler, L., Daniol, M., Sroka, R., Osinski, D., & Keller, A. (2021). Sensors in the Autoclave-Modelling and Implementation of the IoT Steam Sterilization Procedure Counter. Sensors, 21(2), 510. https://doi.org/10.3390/s21020510