Biosignal Compression Toolbox for Digital Biomarker Discovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Pre-Processing
2.3. Data Compression Evaluation Criteria
2.4. Data Compression Methods
2.4.1. Direct Data Compression with Huffman Encoding
2.4.2. Singular Value Decomposition with Huffman Encoding
2.4.3. Biorthogonal Discrete Wavelet Transform with Huffman Encoding
2.4.4. DCT-Based DOST with Huffman Encoding
2.4.5. DCT-Based DOST with Run-Length Encoding
3. Results
3.1. Minimizing Information Loss for Digital Biomarker Development
3.2. Maximizing Data Compression
3.3. Open-Source Biosignal Data Compression Toolbox
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holst, A. Wearable Technology—Statistics & Facts. Available online: https://www.statista.com/topics/1556/wearable-technology/ (accessed on 30 June 2020).
- Harnessing the Power of Data in Health: Stanford Medicine Health Trends Report; Stanford Medicine: Stanford, CA, USA, 2017.
- Bill Tolson Where Should Healthcare Data Be Stored In 2018—And Beyond. Available online: https://www.healthitoutcomes.com/doc/where-should-healthcare-data-be-stored-in-and-beyond-0001 (accessed on 31 July 2019).
- Raghupathi, W.; Raghupathi, V. Big data analytics in healthcare: Promise and potential. Health Inf. Sci. Syst. 2014, 2, 3. [Google Scholar] [CrossRef]
- Bent, B.; Dunn, J.P. Optimizing Sampling Rate of Wrist-worn Optical Sensors for Physiologic Monitoring. J. Clin. Transl. Sci. 2020, 1–27. [Google Scholar] [CrossRef]
- Mahadevan, N.; Demanuele, C.; Zhang, H.; Volfson, D.; Ho, B.; Erb, M.K.; Patel, S. Development of digital biomarkers for resting tremor and bradykinesia using a wrist-worn wearable device. NPJ Digit. Med. 2020, 3, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arefan, D.; Mohamed, A.A.; Berg, W.A.; Zuley, M.L.; Sumkin, J.H.; Wu, S. Deep learning modeling using normal mammograms for predicting breast cancer risk. Med. Phys. 2020, 47, 110–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mc Carthy, M.; Schueler, P. Editorial: Can Digital Technology Advance the Development of Treatments for Alzheimer’s Disease? J. Prev. Alzheimer’s Dis. 2019, 6, 217–220. [Google Scholar] [CrossRef]
- Dunn, J.; Runge, R.; Snyder, M. Wearables and the medical revolution. Pers. Med. 2018, 15, 429–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bent, B.; Wang, K.; Grzesiak, E.; Jiang, C.; Qi, Y.; Jiang, Y.; Cho, P.; Zingler, K.; Ogbeide, F.I.; Zhao, A.; et al. The Digital Biomarker Discovery Pipeline: An open source software platform for the development of digital biomarkers using mHealth and wearables data. J. Clin. Transl. Sci. 2020, 1–28. [Google Scholar] [CrossRef]
- Mueller, W.C. Arrhythmia Detection Program for an Ambulatory Ecg Monitor. In Proceedings of the Biomedical Sciences Instrumentation; ISA: Halton Hills, ON, Canada, 1978; Volume 14, pp. 81–85. [Google Scholar]
- Choi, A.; Shin, H. Photoplethysmography sampling frequency: Pilot assessment of how low can we go to analyze pulse rate variability with reliability? Physiol. Meas. 2017, 38, 586–600. [Google Scholar] [CrossRef]
- Kumar Bhattacharjee, A.; Bej, T.; Agarwal, S. Comparison Study of Lossless Data Compression Algorithms for Text Data. IOSR-JCE 2013, 11, 15–19. [Google Scholar] [CrossRef]
- Rebollo-Neira, L. Effective high compression of ECG signals at low level distortion. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Tan, C. A novel ECG data compression method based on adaptive Fourier decomposition. SPIE-Intl. Soc. Optical. Eng. 2017, 10613. [Google Scholar] [CrossRef]
- Chen, J.; Itoh, S. A wavelet transform-based ECG compression method guaranteeing desired signal quality. IEEE Trans. Biomed. Eng. 1998, 45, 1414–1419. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, J.; Lee, M. A real-time ECG data compression and transmission algorithm for an e-health device. IEEE Trans. Biomed. Eng. 2011, 58, 2448–2455. [Google Scholar] [CrossRef] [PubMed]
- Dhar, S.; Mukhopadhyay, S.K.; Pal, S.; Mitra, M. An efficient data compression and encryption technique for PPG signal. Meas. J. Int. Meas. Confed. 2018, 116, 533–542. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.K.; Ahmad, M.O.; Swamy, M.N.S. Compression of Steganographed PPG Signal with Guaranteed Reconstruction Quality Based on Optimum Truncation of Singular Values and ASCII Character Encoding. IEEE Trans. Biomed. Eng. 2019, 66, 2081–2090. [Google Scholar] [CrossRef]
- Sadhukhan, D.; Pal, S.; Mitra, M. Adaptive Band Limit Estimation based PPG data compression for portable home monitors. Meas. J. Int. Meas. Confed. 2019, 134, 153–165. [Google Scholar] [CrossRef]
- Wu, C.H.; Tseng, Y.C. Data compression by temporal and spatial correlations in a body-area sensor network: A case study in pilates motion recognition. IEEE Trans. Mob. Comput. 2011, 10, 1459–1472. [Google Scholar] [CrossRef] [Green Version]
- Gu, Q.; Peng, J.; Deng, Z. Compression of Human Motion Capture Data Using Motion Pattern Indexing. Comput. Graph. Forum 2009, 28, 1–12. [Google Scholar] [CrossRef]
- Pope, G.C.; Halter, R.J. Design and implementation of an ultra-low resource electrodermal activity sensor for wearable applications. Sensors 2019, 19, 2450. [Google Scholar] [CrossRef] [Green Version]
- Shaw, L.; Rahman, D.; Routray, A. Highly efficient compression algorithms for multichannel EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 957–968. [Google Scholar] [CrossRef]
- Jha, C.K.; Kolekar, M.H. Electrocardiogram data compression using DCT based discrete orthogonal Stockwell transform. Biomed. Signal Process. Control 2018, 46, 174–181. [Google Scholar] [CrossRef]
- Uthayakumar, J.; Vengattaraman, T.; Dhavachelvan, P. A survey on data compression techniques: From the perspective of data quality, coding schemes, data type and applications. J. King Saud Univ. Comput. Inf. Sci. 2018. [Google Scholar] [CrossRef]
- Gnana Subha, G.; Suja Priyadharsini, S. An Efficient Algorithm Based on Combined Encoding Techniques for Compression of ECG Data from Multiple Leads. Wirel. Pers. Commun. 2019, 108, 2137–2147. [Google Scholar] [CrossRef]
- Rajankar, S.O.; Talbar, S.N. An electrocardiogram signal compression techniques: A comprehensive review. Analog Integr. Circuits Signal Process. 2019, 98, 59–74. [Google Scholar] [CrossRef]
- Jas, A.; Ghosh-Dastidar, J.; Ng, M.E.; Touba, N.A. An efficient test vector compression scheme using selective huffman coding. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2003, 22, 797–806. [Google Scholar] [CrossRef] [Green Version]
- Bent, B.; Goldstein, B.A.; Kibbe, W.A.; Dunn, J.P. Investigating sources of inaccuracy in wearable optical heart rate sensors. NPJ Digit. Med. 2020, 3, 18. [Google Scholar] [CrossRef] [Green Version]
- Hejrati, B.; Fathi, A.; Abdali-Mohammadi, F. A new near-lossless EEG compression method using ANN-based reconstruction technique. Comput. Biol. Med. 2017, 87, 87–94. [Google Scholar] [CrossRef]
- Blanco-Velasco, M.; Cruz-Roldán, F.; Godino-Llorente, J.I.; Blanco-Velasco, J.; Armiens-Aparicio, C.; López-Ferreras, F. On the use of PRD and CR parameters for ECG compression. Med. Eng. Phys. 2005, 27, 798–802. [Google Scholar] [CrossRef]
- Poreba, K. Tcmpr Package Documentation. Available online: https://tcmpr.readthedocs.io/en/latest/installation.html (accessed on 19 August 2020).
- Contributor Covenant: A Code of Conduct for Open Source Projects. Available online: https://www.contributor-covenant.org/ (accessed on 9 February 2020).
- Chien, Y.-R.; Hsu, K.-C.; Tsao, H.-W. Phonocardiography Signals Compression with Deep Convolutional Autoencoder for Telecare Applications. Appl. Sci. 2020, 10, 5842. [Google Scholar] [CrossRef]
- Liu, J.; Chen, F.; Yan, J.; Wang, D. CBN-VAE: A Data Compression Model with Efficient Convolutional Structure for Wireless Sensor Networks. Sensors 2019, 19, 3445. [Google Scholar] [CrossRef] [Green Version]
- Wearable HIPAA Security Concerns Grow for mHealth Apps & Devices. Available online: https://compliancy-group.com/wearable-hipaa-security-concerns-grow-for-mhealth-apps-devices/ (accessed on 13 August 2020).
ECG | PPG | ACC | EDA | TEMP | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CR | PRD% | CR | PRD% | CR | PRD% | CR | PRD% | CR | PRD% | |
DDC + HE | 50.16 | 0.17% | 11.30 | 0.06% | 10.40 | 0.04% | 9.76 | 0.14% | 13.99 | 0.09% |
SVD + HE | 50.16 | 0.38% | 9.22 | 0.49% | 8.63 | 0.02% | 9.75 | 0.14% | 11.32 | 7.08% |
BD-WT + HE | 131.70 | 1.37% | 16.65 | 1.35% | 18.59 | 0.94% | 15.47 | 0.54% | 78.90 | 0.10% |
DCT-DOST + HE | 46.32 | 4.18% | 23.03 | 9.37% | 23.75 | 8.49% | 19.64 | 7.88% | 48.82 | 10.69% |
DCT-DOST + RLE | 9.81 | 4.18% | 3.30 | 9.37% | 3.34 | 8.49% | 3.19 | 7.88% | 8.88 | 10.69% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bent, B.; Lu, B.; Kim, J.; Dunn, J.P. Biosignal Compression Toolbox for Digital Biomarker Discovery. Sensors 2021, 21, 516. https://doi.org/10.3390/s21020516
Bent B, Lu B, Kim J, Dunn JP. Biosignal Compression Toolbox for Digital Biomarker Discovery. Sensors. 2021; 21(2):516. https://doi.org/10.3390/s21020516
Chicago/Turabian StyleBent, Brinnae, Baiying Lu, Juseong Kim, and Jessilyn P. Dunn. 2021. "Biosignal Compression Toolbox for Digital Biomarker Discovery" Sensors 21, no. 2: 516. https://doi.org/10.3390/s21020516
APA StyleBent, B., Lu, B., Kim, J., & Dunn, J. P. (2021). Biosignal Compression Toolbox for Digital Biomarker Discovery. Sensors, 21(2), 516. https://doi.org/10.3390/s21020516