Inorganic-Diverse Nanostructured Materials for Volatile Organic Compound Sensing
Abstract
:1. Introduction
2. Materials and Diverse Nanostructure Selections
- For device-based detection, the materials must have the unique p- or n-type semiconducting properties, which can be further boosted by combining with other materials to form a p-n or p-p or n-n heterojunction towards specific analyte quantification [46].
- The selected nanomaterials must have large surface to enhance the adsorption of gaseous VOCs, which can induce signal responses, such as I-V fluctuations, electrochemical responses, fluorescent deviations, etc. However, for device-based sensing, signals are obtained as either I-V or electrochemical responses.
- To attain the discrimination of diverse VOCs, different 1D to 3D nanostructures (nanoparticles/quantum dots, nanocrystals, nanorods/nanowires/nanoneedles, nanofibers/nanobelts, nanotubes, nanocubes, nanocages, nanowalls, nanosheets, nanoflakes/nanoplates, nanospheres, nanoflowers, porous-nanostructures, hierarchical nanostructures, and so on) can be adapted via optimizing their selectivity and sensitivity to specific analyte [47,48,49,50,51,52,53,54,55,56,57,58].
- Diverse nanostructures can be developed by chemical synthesis, hydrothermal, chemical vapor deposition (CVD), combustion synthesis, sputtering, electrospinning, impregnation, sol–gel, solid-state reaction, hybrid composite synthesis, etc., to achieve specific sensitivity to the target VOC [47,48,49,50,51,52,53,54,55,56,57,58]. However, this should be done without affecting semiconducting properties of the proposed nanostructure, otherwise the sensitivity and reproducibility may be affected significantly.
- Fabricated nanostructures on device must withstand different VOC exposures and at diverse humid/temperature conditions. Many devices may be affected by humidity of the environment and lead to malfunction, thereby special attention should be paid to the effect of humidity on the sensory devices. Similarly, certain semiconducting/hybrid materials can function at either higher or lower temperatures. Therefore, justification of operating temperature is a must for the sensory devices.
3. Diverse Nanostructures in Acetone Detection
4. Alcoholic Vapor Detection by Miscellaneous Nanostructures
5. Various Nanostructures in Volatile Aldehyde Detection
6. Various Nanostructures in Volatile Organic Amines Detection
7. Volatile Hydrocarbons Detection by Distinct Nanostructures
8. Nanostructures in other VOCs Determinations
9. Advantages and Limitations
- By tuning the nanostructural features, materials with similar compositions are able to detect diverse VOC analytes.
- Modulation of nanostructures might be able to tune the availability of surface area to enhance adsorption of VOC analytes, thereby the sensor response can be improved significantly.
- By adopting different nanostructures, the operating temperature for the sensing of specified VOC can be reduced or lowered to room temperature.
- Divergent nanostructures formation via the combination of diverse materials and their decoration or doping or functionalization may enhance/tune the conducting and charge/electron transport properties, which can help the device to detect specific VOC from other competing species.
- Utilization of known and easily fabricated semiconducting materials with diverse nanostructures may led to the generation of cost-effective and reliable devices with social impact.
- The less toxic nature of some semiconducting materials is noted as an advantage and can be implemented in upcoming health care devices.
- Synthesis of majority of diverse nanostructures seems to be more complicated with involvement of multiple synthetic tactics, such as hydrothermal, CVD, impregnation, electrospinning, etc. The requirement of processing at high temperature further increases the production cost.
- Reliability of numerous diverse semiconducting nanostructures to specific VOC is still in question due to the higher operating temperature.
- Reports on temperature dependent multiple analyte sensors by a few nanostructured materials are still not convincing with the interference studies; therefore, applicability of those materials is limited and requires more interrogations.
- Fabrication of diverse nanostructured materials is also limited by the sophisticated clean room atmosphere and characterizations using costly equipment, such as SEM, TEM, electrochemical instruments, etc.
- Majority of reported nanostructures are still not authenticated by real time applications, which limits the operation of those devices in VOC detection.
- In general, porous nanostructures display the high/low responses to VOCs due to their pore-effect but are limited in operation by their uneven results.
- Stability of sensory reports is considerably affected by high humid conditions and is restricted in real time applications.
10. Conclusions and Perspectives
- Synthetic complications on the development of semiconducting materials towards VOCs sensors must be reduced with respect to cost-effect and reliability.
- Justification regarding the role of semiconducting property in the sensing studies seems to be deficient in some reports, which requires more investigations.
- Majority of the reports did not provide any theoretical or in-depth explanation regarding, “Why the attested nanostructure becomes more specific to the certain target?” Therefore, extensive research must be done in future.
- Utilization of diverse nanostructures with similar material compositions towards different VOCs still needs more interpretations.
- Numerous VOCs sensors operate at higher temperature, thereby optimization research should be conducted to make the devices operable at low temperature or even room temperature.
- Studies on how to resolve the factors that affecting the sensor response (such as humidity, interferences, temperature, etc.) are necessary.
- So far, majority of VOC sensors make use of metal-oxide nanostructures, thereby implementation of devices with emerging halide perovskite nanomaterials can be much anticipated in VOCs detection.
- Many reports describe the dopant and composited materials tuned sensory responses towards specific VOCs, but there is no-valid information regarding the efficacy and the role of such dopants or composited materials on the VOCs sensing, which requires clarification.
- Enormous amount of reports are available for acetone and alcohols chemiresistor sensors, thus upcoming researchers must focus towards commercialization rather than simply developing the new materials.
- Due to the high toxic effect of aldehydes and amines over the eco-systems, chemiresistor sensors coupled with eco-friendly instrumental set up is requires much focus.
- Mainstream of BTEX assays by distinct nanostructures are still need to be tuned towards specific target due to their ineffectiveness towards mixed analytes.
- Detection of other toxic VOCs (such as carbon tetrachloride (CCl4), chloroform (CHCl3), phosgene, etc.) needs much attention in future.
- Standardized procedure is become mandatory to attain the specific nanostructures and its VOC sensing performance.
- Development of stable and commercial devices in the determination of VOCs is still in demand, therefore, much attention is required for commercialization.
- More research is necessary to justify the exact production cost of reliable devices in VOCs detection with social importance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Broza, Y.Y.; Vishinkin, R.; Barash, O.; Nakhleh, M.K.; Haick, H. Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chem. Soc. Rev. 2018, 47, 4781–4859. [Google Scholar] [CrossRef]
- Broza, Y.Y.; Haick, H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine 2013, 8, 785–806. [Google Scholar] [CrossRef] [PubMed]
- Konvalina, G.; Haick, H. Sensors for Breath Testing: From Nanomaterials to Comprehensive Disease Detection. Acc. Chem. Res. 2014, 47, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.-C.; Xu, X.-H.; Song, Q.-H. Fluorescent Chemosensor for Selective Detection of Phosgene in Solutions and in Gas Phase. ACS Sens. 2017, 2, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Maiti, K.; Ghosh, D.; Maiti, R.; Vyas, V.; Datta, P.; Mandal, D.; Maiti, D.K. Ratiometric chemodosimeter: An organic-nanofiber platform for sensing lethal phosgene gas. J. Mater. Chem. A 2019, 7, 1756–1767. [Google Scholar] [CrossRef]
- Mirzaei, A.; Leonardi, S.G.; Neri, G. Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review. Ceram. Int. 2016, 42, 15119–15141. [Google Scholar] [CrossRef]
- Spinelle, L.; Gerboles, M.; Kok, G.; Persijn, S.; Sauerwald, T. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds. Sensors 2017, 17, 1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalal, A.H.; Alam, F.; Roychoudhury, S.; Umasankar, Y.; Pala, N.; Bhansali, S. Prospects and Challenges of Volatile Organic Compound Sensors in Human Healthcare. ACS Sens. 2018, 3, 1246–1263. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, Z.; Yu, S.; Mi, Q.; Pan, Q. Diversiform metal oxide-based hybrid nanostructures for gas sensing with versatile prospects. Coord. Chem. Rev. 2020, 413, 213272. [Google Scholar] [CrossRef]
- Swain, S.K.; Barik, S.; Das, R. Nanomaterials as Sensor for Hazardous Gas Detection. In Handbook of Ecomaterials; Martínez, L.M.T., Kharissova, O.V., Kharisov, B.I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–20. [Google Scholar]
- Francioso, L.; De Pascali, C.; Creti, P.; Radogna, A.V.; Capone, S.; Taurino, A.; Epifani, M.; Baldacchini, C.; Bizzarri, A.R.; Siciliano, P.A. Nanogap Sensors Decorated with SnO2 Nanoparticles Enable Low-Temperature Detection of Volatile Organic Compounds. ACS Appl. Nano Mater. 2020, 3, 3337–3346. [Google Scholar] [CrossRef]
- Maslik, J.; Kuritka, I.; Urbanek, P.; Krcmar, P.; Suly, P.; Masar, M.; Machovsky, M. Water-Based Indium Tin Oxide Nanoparticle Ink for Printed Toluene Vapours Sensor Operating at Room Temperature. Sensors 2018, 18, 3246. [Google Scholar] [CrossRef] [Green Version]
- Shellaiah, M.; Sun, K.W. Review on Sensing Applications of Perovskite Nanomaterials. Chemosensors 2020, 8, 55. [Google Scholar] [CrossRef]
- Amiri, V.; Roshan, H.; Mirzaei, A.; Neri, G.; Ayesh, A.I. Nanostructured Metal Oxide-Based Acetone Gas Sensors: A Review. Sensors 2020, 20, 3096. [Google Scholar] [CrossRef] [PubMed]
- Prakash Sharma, V.; Sharma, U.; Chattopadhyay, M.; Shukla, V.N. Advance Applications of Nanomaterials: A Review. Mater. Today Proc. 2018, 5, 6376–6380. [Google Scholar] [CrossRef]
- Nanomaterials definition matters. Nat. Nanotechnol. 2019, 14, 193. [CrossRef] [PubMed] [Green Version]
- Kolahalam, L.A.; Kasi Viswanath, I.V.; Diwakar, B.S.; Govindh, B.; Reddy, V.; Murthy, Y.L.N. Review on nanomaterials: Synthesis and applications. Mater. Today Proc. 2019, 18, 2182–2190. [Google Scholar] [CrossRef]
- Shellaiah, M.; Sun, K.W. Review on Nanomaterial-Based Melamine Detection. Chemosensors 2019, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Pirzada, M.; Altintas, Z. Nanomaterials for Healthcare Biosensing Applications. Sensors 2019, 19, 5311. [Google Scholar] [CrossRef] [Green Version]
- Shellaiah, M.; Chen, Y.-C.; Simon, T.; Li, L.-C.; Sun, K.W.; Ko, F.-H. Effect of Metal Ions on Hybrid Graphite-Diamond Nanowire Growth: Conductivity Measurements from a Single Nanowire Device. Nanomaterials 2019, 9, 415. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Deng, J.; Qiu, L.; Fang, X.; Peng, H. Recent progress in solar cells based on one-dimensional nanomaterials. Energy Environ. Sci. 2015, 8, 1139–1159. [Google Scholar] [CrossRef]
- Rowland, C.E.; Brown, C.W.; Delehanty, J.B.; Medintz, I.L. Nanomaterial-based sensors for the detection of biological threat agents. Mater. Today 2016, 19, 464–477. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhou, Q.; Peng, S.; Liao, Y. Recent Advances of SnO2-Based Sensors for Detecting Volatile Organic Compounds. Front. Chem. 2020, 8, 321. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Karim, R.; Reda, Y.; Abdel-Fattah, A. Review—Nanostructured Materials-Based Nanosensors. J. Electrochem. Soc. 2020, 167, 037554. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Q.; Peng, S.; Xu, L.; Zeng, W. Volatile Organic Compounds Gas Sensors Based on Molybdenum Oxides: A Mini Review. Front. Chem. 2020, 8, 339. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.; Tomer, V.K.; Mishra, Y.K.; Lin, L. Functional gas sensing nanomaterials: A panoramic view. Appl. Phys. Rev. 2020, 7, 021301. [Google Scholar] [CrossRef] [Green Version]
- Camilli, L.; Passacantando, M. Advances on Sensors Based on Carbon Nanotubes. Chemosensors 2018, 6, 62. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T.M. Carbon Nanotube Chemical Sensors. Chem. Rev. 2019, 119, 599–663. [Google Scholar] [CrossRef]
- Zhou, X.; Xue, Z.; Chen, X.; Huang, C.; Bai, W.; Lu, Z.; Wang, T. Nanomaterial-based gas sensors used for breath diagnosis. J. Mater. Chem. B 2020, 8, 3231–3248. [Google Scholar] [CrossRef]
- Li, X.; Sun, L.; Sui, H.; He, L.; Yuan, W.; Han, Z. A Novel Polymeric Adsorbent Embedded with Phase Change Materials (PCMs) Microcapsules: Synthesis and Application. Nanomaterials 2019, 9, 736. [Google Scholar] [CrossRef] [Green Version]
- Bearzotti, A.; Macagnano, A.; Papa, P.; Venditti, I.; Zampetti, E. A study of a QCM sensor based on pentacene for the detection of BTX vapors in air. Sens. Actuators B 2017, 240, 1160–1164. [Google Scholar] [CrossRef]
- Wang, B.; Sonar, P.; Manzhos, S.; Haick, H. Diketopyrrolopyrrole copolymers based chemical sensors for the detection and discrimination of volatile organic compounds. Sens. Actuators B 2017, 251, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tao, H.; Yu, D.; Chang, C. Performance Assessment of Ordered Porous Electrospun Honeycomb Fibers for the Removal of Atmospheric Polar Volatile Organic Compounds. Nanomaterials 2018, 8, 350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantalei, S.; Zampetti, E.; Macagnano, A.; Bearzotti, A.; Venditti, I.; Russo, M.V. Enhanced Sensory Properties of a Multichannel Quartz Crystal Microbalance Coated with Polymeric Nanobeads. Sensors 2007, 7, 2920–2928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avossa, J.; Paolesse, R.; Di Natale, C.; Zampetti, E.; Bertoni, G.; De Cesare, F.; Scarascia-Mugnozza, G.; Macagnano, A. Electrospinning of Polystyrene/Polyhydroxybutyrate Nanofibers Doped with Porphyrin and Graphene for Chemiresistor Gas Sensors. Nanomaterials 2019, 9, 280. [Google Scholar] [CrossRef] [Green Version]
- Walekar, L.; Dutta, T.; Kumar, P.; Ok, Y.S.; Pawar, S.; Deep, A.; Kim, K.-H. Functionalized fluorescent nanomaterials for sensing pollutants in the environment: A critical review. TrAC Trends Anal. Chem. 2017, 97, 458–467. [Google Scholar] [CrossRef]
- Andre, R.S.; Sanfelice, R.C.; Pavinatto, A.; Mattoso, L.H.C.; Correa, D.S. Hybrid nanomaterials designed for volatile organic compounds sensors: A review. Mater. Des. 2018, 156, 154–166. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Hu, R.; Qiao, Q.; Li, X. Synthesis and gas sensing properties of porous hierarchical SnO2 by grapefruit exocarp biotemplate. Sens. Actuators B 2016, 222, 1134–1143. [Google Scholar] [CrossRef]
- Li, J.; Tang, P.; Zhang, J.; Feng, Y.; Luo, R.; Chen, A.; Li, D. Facile Synthesis and Acetone Sensing Performance of Hierarchical SnO2 Hollow Microspheres with Controllable Size and Shell Thickness. Ind. Eng. Chem. Res. 2016, 55, 3588–3595. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, Z.; Zou, T.; Wang, Z.; Xing, X.; Yang, Y.; Wang, Y. ‘Green’ prepare SnO2 nanofibers by shaddock peels: Application for detection of volatile organic compound gases. J. Mater. Sci. Mater. Electron. 2019, 30, 3032–3044. [Google Scholar] [CrossRef]
- Abdelghani, R.; Shokry Hassan, H.; Morsi, I.; Kashyout, A.B. Nano-architecture of highly sensitive SnO2–based gas sensors for acetone and ammonia using molecular imprinting technique. Sens. Actuators B 2019, 297, 126668. [Google Scholar] [CrossRef]
- Li, R.; Chen, S.; Lou, Z.; Li, L.; Huang, T.; Song, Y.; Chen, D.; Shen, G. Fabrication of porous SnO2 nanowires gas sensors with enhanced sensitivity. Sens. Actuators B 2017, 252, 79–85. [Google Scholar] [CrossRef]
- Bing, Y.; Liu, C.; Qiao, L.; Zeng, Y.; Yu, S.; Liang, Z.; Liu, J.; Luo, J.; Zheng, W. Multistep synthesis of non-spherical SnO2@SnO2 yolk-shell cuboctahedra with nanoparticle-assembled porous structure for toluene detection. Sens. Actuators B 2016, 231, 365–375. [Google Scholar] [CrossRef]
- Torrinha, Á.; Oliveira, T.M.B.F.; Ribeiro, F.W.P.; Correia, A.N.; Lima-Neto, P.; Morais, S. Application of Nanostructured Carbon-Based Electrochemical (Bio)Sensors for Screening of Emerging Pharmaceutical Pollutants in Waters and Aquatic Species: A Review. Nanomaterials 2020, 10, 1268. [Google Scholar] [CrossRef] [PubMed]
- Waheed, A.; Mansha, M.; Ullah, N. Nanomaterials-based electrochemical detection of heavy metals in water: Current status, challenges and future direction. TrAC Trends Anal. Chem. 2018, 105, 37–51. [Google Scholar] [CrossRef]
- Jian, Y.; Hu, W.; Zhao, Z.; Cheng, P.; Haick, H.; Yao, M.; Wu, W. Gas Sensors Based on Chemi-Resistive Hybrid Functional Nanomaterials. Nano-Micro Lett. 2020, 12, 71. [Google Scholar] [CrossRef] [Green Version]
- Ferrero, F.J.; Valledor, M.; Campo, J.C.; López, A.; Llano-Suárez, P.; Fernández-Arguelles, M.T.; Costa-Fernández, J.M.; Soldado, A. Portable Instrument for Monitoring Environmental Toxins Using Immobilized Quantum Dots as the Sensing Material. Appl. Sci. 2020, 10, 3246. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Wang, M.; Pei, C.; Liu, B.; Yuan, Y.; Liu, S.; Yang, H. Enhancing the Sensing Properties of TiO2 Nanosheets with Exposed {001} Facets by a Hydrogenation and Sensing Mechanism. Inorg. Chem. 2017, 56, 1504–1510. [Google Scholar] [CrossRef]
- Zhou, T.; Sang, Y.; Wang, X.; Wu, C.; Zeng, D.; Xie, C. Pore size dependent gas-sensing selectivity based on ZnO@ZIF nanorod arrays. Sens. Actuators B 2018, 258, 1099–1106. [Google Scholar] [CrossRef]
- Dey, S.; Nag, S.; Santra, S.; Ray, S.K.; Guha, P.K. Voltage-controlled NiO/ZnO p–n heterojunction diode: A new approach towards selective VOC sensing. Microsyst. Nanoeng. 2020, 6, 35. [Google Scholar] [CrossRef]
- Yeung, H.H.M.; Yoshikawa, G.; Minami, K.; Shiba, K. Strain-based chemical sensing using metal–organic framework nanoparticles. J. Mater. Chem. A 2020, 8, 18007–18014. [Google Scholar] [CrossRef]
- Kim, S.-J.; Choi, S.-J.; Jang, J.-S.; Kim, N.-H.; Hakim, M.; Tuller, H.L.; Kim, I.-D. Mesoporous WO3 Nanofibers with Protein-Templated Nanoscale Catalysts for Detection of Trace Biomarkers in Exhaled Breath. ACS Nano 2016, 10, 5891–5899. [Google Scholar] [CrossRef] [PubMed]
- Rodner, M.; Puglisi, D.; Ekeroth, S.; Helmersson, U.; Shtepliuk, I.; Yakimova, R.; Skallberg, A.; Uvdal, K.; Schütze, A.; Eriksson, J. Graphene Decorated with Iron Oxide Nanoparticles for Highly Sensitive Interaction with Volatile Organic Compounds. Sensors 2019, 19, 918. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.Y.; Yen, C.-C.; Xue, S.; Wang, H.; Stanciu, L.A. Surface Functionalization of Layered Molybdenum Disulfide for the Selective Detection of Volatile Organic Compounds at Room Temperature. ACS Appl. Mater. Interfaces 2019, 11, 34135–34143. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Qin, Y.; Xie, W.; Deng, Z.; Yang, C.; Su, X. Facile synthesis of high-stable and monodisperse Fe3O4/carbon flake-like nanocomposites and their excellent gas sensing properties. J. Alloys Compd. 2020, 818, 152898. [Google Scholar] [CrossRef]
- Han, X.; Sun, Y.; Feng, Z.; Zhang, G.; Chen, Z.; Zhan, J. Au-deposited porous single-crystalline ZnO nanoplates for gas sensing detection of total volatile organic compounds. RSC Adv. 2016, 6, 37750–37756. [Google Scholar] [CrossRef]
- Han, T.-L.; Wan, Y.-T.; Li, J.-J.; Zhang, H.-G.; Liu, J.-H.; Huang, X.-J.; Liu, J.-Y. In situ gold nanoparticle-decorated three-dimensional tin dioxide nanostructures for sensitive and selective gas-sensing detection of volatile organic compounds. J. Mater. Chem. C 2017, 5, 6193–6201. [Google Scholar] [CrossRef]
- Postica, V.; Vahl, A.; Santos-Carballal, D.; Dankwort, T.; Kienle, L.; Hoppe, M.; Cadi-Essadek, A.; de Leeuw, N.H.; Terasa, M.-I.; Adelung, R.; et al. Tuning ZnO Sensors Reactivity toward Volatile Organic Compounds via Ag Doping and Nanoparticle Functionalization. ACS Appl. Mater. Interfaces 2019, 11, 31452–31466. [Google Scholar] [CrossRef] [Green Version]
- Navale, S.T.; Yang, Z.B.; Liu, C.; Cao, P.J.; Patil, V.B.; Ramgir, N.S.; Mane, R.S.; Stadler, F.J. Enhanced acetone sensing properties of titanium dioxide nanoparticles with a sub-ppm detection limit. Sens. Actuators B 2018, 255, 1701–1710. [Google Scholar] [CrossRef]
- Liang, S.; Li, J.; Wang, F.; Qin, J.; Lai, X.; Jiang, X. Highly sensitive acetone gas sensor based on ultrafine α-Fe2O3 nanoparticles. Sens. Actuators B 2017, 238, 923–927. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, J.; Wang, Z.; Bian, Y.; Wang, Y.; Han, N.; Chen, Y. Transilient Response to Acetone Gas Using the Interlocking p+n Field-Effect Transistor Circuit. Sensors 2018, 18, 1914. [Google Scholar] [CrossRef] [Green Version]
- Koo, A.; Yoo, R.; Woo, S.P.; Lee, H.-S.; Lee, W. Enhanced acetone-sensing properties of pt-decorated al-doped ZnO nanoparticles. Sens. Actuators B 2019, 280, 109–119. [Google Scholar] [CrossRef]
- Yoo, R.; Park, Y.; Jung, H.; Rim, H.J.; Cho, S.; Lee, H.-S.; Lee, W. Acetone-sensing properties of doped ZnO nanoparticles for breath-analyzer applications. J. Alloys Compd. 2019, 803, 135–144. [Google Scholar] [CrossRef]
- Yang, W.; Shen, H.; Min, H.; Ge, J. Enhanced acetone sensing performance in black TiO2 by Ag modification. J. Mater. Sci. 2020, 55, 10399–10411. [Google Scholar] [CrossRef]
- Liu, H.; Li, C.; Zhang, X.; Zheng, K.; Xie, R.; Huang, H.; Peng, T.; Jia, R.; Huo, J. A novel and highly responsive acetone sensor based on La1−xYxMnO3+δ nanoparticles. Mater. Lett. 2019, 257, 126725. [Google Scholar] [CrossRef]
- Peng, S.; Ma, M.; Yang, W.; Wang, Z.; Wang, Z.; Bi, J.; Wu, J. Acetone sensing with parts-per-billion limit of detection using a BiFeO3-based solid solution sensor at the morphotropic phase boundary. Sens. Actuators B 2020, 313, 128060. [Google Scholar] [CrossRef]
- Zhang, H.; Qin, H.; Zhang, P.; Hu, J. High Sensing Properties of 3 wt % Pd-Doped SmFe1–xMgxO3 Nanocrystalline Powders to Acetone Vapor with Ultralow Concentrations under Light Illumination. ACS Appl. Mater. Interfaces 2018, 10, 15558–15564. [Google Scholar] [CrossRef]
- Lu, J.; Xu, C.; Cheng, L.; Jia, N.; Huang, J.; Li, C. Acetone sensor based on WO3 nanocrystallines with oxygen defects for low concentration detection. Mater. Sci. Semicond. Proc. 2019, 101, 214–222. [Google Scholar] [CrossRef]
- Epifani, M.; Kaciulis, S.; Mezzi, A.; Zhang, T.; Arbiol, J.; Siciliano, P.; Landström, A.; Concina, I.; Moumen, A.; Comini, E.; et al. Rhodium as efficient additive for boosting acetone sensing by TiO2 nanocrystals. Beyond the classical view of noble metal additives. Sens. Actuators B 2020, 319, 128338. [Google Scholar] [CrossRef]
- Kim, H.; Cai, Z.; Chang, S.-P.; Park, S. Improved sub-ppm acetone sensing properties of SnO2 nanowire-based sensor by attachment of Co3O4 nanoparticles. J. Mater. Res. Technol. 2020, 9, 1129–1136. [Google Scholar] [CrossRef]
- Singh, M.; Kaur, N.; Drera, G.; Casotto, A.; Sangaletti, L.; Comini, E. SAM Functionalized ZnO Nanowires for Selective Acetone Detection: Optimized Surface Specific Interaction Using APTMS and GLYMO Monolayers. Adv. Funct. Mater. 2020, 30, 2003217. [Google Scholar] [CrossRef]
- Xue, X.-T.; Zhu, L.-Y.; Yuan, K.-P.; Zeng, C.; Li, X.-X.; Ma, H.-P.; Lu, H.-L.; Zhang, D.W. ZnO branched p-CuxO@n-ZnO heterojunction nanowires for improving acetone gas sensing performance. Sens. Actuators B 2020, 324, 128729. [Google Scholar] [CrossRef]
- Zhang, G.H.; Deng, X.Y.; Wang, P.Y.; Wang, X.L.; Chen, Y.; Ma, H.L.; Gengzang, D.J. Morphology controlled syntheses of Cr doped ZnO single-crystal nanorods for acetone gas sensor. Mater. Lett. 2016, 165, 83–86. [Google Scholar] [CrossRef]
- Giberti, A.; Gaiardo, A.; Fabbri, B.; Gherardi, S.; Guidi, V.; Malagù, C.; Bellutti, P.; Zonta, G.; Casotti, D.; Cruciani, G. Tin(IV) sulfide nanorods as a new gas sensing material. Sens. Actuators B 2016, 223, 827–833. [Google Scholar] [CrossRef]
- Huang, J.; Zhou, J.; Liu, Z.; Li, X.; Geng, Y.; Tian, X.; Du, Y.; Qian, Z. Enhanced acetone-sensing properties to ppb detection level using Au/Pd-doped ZnO nanorod. Sens. Actuators B 2020, 310, 127129. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, K.; Fei, T.; Gu, F.; Han, D. α-Fe2O3/NiO heterojunction nanorods with enhanced gas sensing performance for acetone. Sens. Actuators B 2020, 318, 128191. [Google Scholar] [CrossRef]
- Al-Hadeethi, Y.; Umar, A.; Ibrahim, A.A.; Al-Heniti, S.H.; Kumar, R.; Baskoutas, S.; Raffah, B.M. Synthesis, characterization and acetone gas sensing applications of Ag-doped ZnO nanoneedles. Ceram. Int. 2017, 43, 6765–6770. [Google Scholar] [CrossRef]
- Gao, F.; Qin, G.; Li, Y.; Jiang, Q.; Luo, L.; Zhao, K.; Liu, Y.; Zhao, H. One-pot synthesis of La-doped SnO2 layered nanoarrays with an enhanced gas-sensing performance toward acetone. RSC Adv. 2016, 6, 10298–10310. [Google Scholar] [CrossRef]
- Gong, H.; Zhao, C.; Niu, G.; Zhang, W.; Wang, F. Construction of 1D/2D α-Fe2O3/SnO2 Hybrid Nanoarrays for Sub-ppm Acetone Detection. Research 2020, 2020, 2196063. [Google Scholar] [CrossRef] [Green Version]
- Abdul Haroon Rashid, S.S.A.; Sabri, Y.M.; Kandjani, A.E.; Harrison, C.J.; Canjeevaram Balasubramanyam, R.K.; Della Gaspera, E.; Field, M.R.; Bhargava, S.K.; Tricoli, A.; Wlodarski, W.; et al. Zinc Titanate Nanoarrays with Superior Optoelectrochemical Properties for Chemical Sensing. ACS Appl. Mater. Interfaces 2019, 11, 29255–29267. [Google Scholar] [CrossRef]
- Xu, X.; Chen, Y.; Zhang, G.; Ma, S.; Lu, Y.; Bian, H.; Chen, Q. Highly sensitive VOCs-acetone sensor based on Ag-decorated SnO2 hollow nanofibers. J. Alloys Compd. 2017, 703, 572–579. [Google Scholar] [CrossRef]
- Ma, L.; Ma, S.Y.; Shen, X.F.; Wang, T.T.; Jiang, X.H.; Chen, Q.; Qiang, Z.; Yang, H.M.; Chen, H. PrFeO3 hollow nanofibers as a highly efficient gas sensor for acetone detection. Sens. Actuators B 2018, 255, 2546–2554. [Google Scholar] [CrossRef]
- Guo, L.; Chen, F.; Xie, N.; Kou, X.; Wang, C.; Sun, Y.; Liu, F.; Liang, X.; Gao, Y.; Yan, X.; et al. Ultra-sensitive sensing platform based on Pt-ZnO-In2O3 nanofibers for detection of acetone. Sens. Actuators B 2018, 272, 185–194. [Google Scholar] [CrossRef]
- Shao, S.; Chen, X.; Chen, Y.; Lai, M.; Che, L. Ultrasensitive and highly selective detection of acetone based on Au@WO3-SnO2 corrugated nanofibers. Appl. Surf. Sci. 2019, 473, 902–911. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Wang, M.; Ma, S.; Wang, P.; Zhang, G.; Chen, W.; Jiao, H.; Liu, L.; Xu, X. Enhanced acetone sensor based on Au functionalized In-doped ZnSnO3 nanofibers synthesized by electrospinning method. J. Colloid Interface Sci. 2019, 543, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Yang, W.; Yi, W.; Sun, Y.; Yu, N.; Wang, J. Oxygen-Plasma-Assisted Enhanced Acetone-Sensing Properties of ZnO Nanofibers by Electrospinning. ACS Appl. Mater. Interfaces 2020, 12, 23084–23093. [Google Scholar] [CrossRef]
- Kou, X.; Meng, F.; Chen, K.; Wang, T.; Sun, P.; Liu, F.; Yan, X.; Sun, Y.; Liu, F.; Shimanoe, K.; et al. High-performance acetone gas sensor based on Ru-doped SnO2 nanofibers. Sens. Actuators B 2020, 320, 128292. [Google Scholar] [CrossRef]
- Jang, J.-S.; Yu, S.; Choi, S.-J.; Kim, S.-J.; Koo, W.-T.; Kim, I.-D. Metal Chelation Assisted In Situ Migration and Functionalization of Catalysts on Peapod-Like Hollow SnO2 toward a Superior Chemical Sensor. Small 2016, 12, 5989–5997. [Google Scholar] [CrossRef] [PubMed]
- Koo, W.-T.; Jang, J.-S.; Choi, S.-J.; Cho, H.-J.; Kim, I.-D. Metal–Organic Framework Templated Catalysts: Dual Sensitization of PdO–ZnO Composite on Hollow SnO2 Nanotubes for Selective Acetone Sensors. ACS Appl. Mater. Interfaces 2017, 9, 18069–18077. [Google Scholar] [CrossRef]
- Dai, M.; Zhao, L.; Gao, H.; Sun, P.; Liu, F.; Zhang, S.; Shimanoe, K.; Yamazoe, N.; Lu, G. Hierarchical Assembly of α-Fe2O3 Nanorods on Multiwall Carbon Nanotubes as a High-Performance Sensing Material for Gas Sensors. ACS Appl. Mater. Interfaces 2017, 9, 8919–8928. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, M.; Zhou, T.; Zhang, T. Robust cobalt perforated with multi-walled carbon nanotubes as an effective sensing material for acetone detection. Inorg. Chem. Front. 2018, 5, 2563–2570. [Google Scholar] [CrossRef]
- Zhao, C.; Lan, W.; Gong, H.; Bai, J.; Ramachandran, R.; Liu, S.; Wang, F. Highly sensitive acetone-sensing properties of Pt-decorated CuFe2O4 nanotubes prepared by electrospinning. Ceram. Int. 2018, 44, 2856–2863. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Leng, D.; Ma, F.; Zhang, Z.; Zhang, Y.; Wang, W.; Liang, Q.; Gao, J.; Lu, H. Nanoscale Pd catalysts decorated WO3–SnO2 heterojunction nanotubes for highly sensitive and selective acetone sensing. Sens. Actuators B 2020, 306, 127575. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, C.; Kong, Q.; Fan, N.; Chen, G.; Guan, H.; Dong, C. ZnO-Decorated In/Ga Oxide Nanotubes Derived from Bimetallic In/Ga MOFs for Fast Acetone Detection with High Sensitivity and Selectivity. ACS Appl. Mater. Interfaces 2020, 12, 26161–26169. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, Y.; Li, S.; Huang, J.; Wu, Y.; Yu, D. The Sensing Properties of Single Y-Doped SnO2 Nanobelt Device to Acetone. Nanoscale Res. Lett. 2016, 11, 470. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Qin, Z.; Liu, Y.; Zhang, Y.; Li, Y.; Shen, S.; Wang, Z.M.; Song, H.-Z. Promotion on Acetone Sensing of Single SnO2 Nanobelt by Eu Doping. Nanoscale Res. Lett. 2017, 12, 405. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Zhang, T.; Deng, J.; Zhang, R.; Lou, Z.; Wang, L. P-type Co3O4 nanomaterials-based gas sensor: Preparation and acetone sensing performance. Sens. Actuators B 2017, 242, 369–377. [Google Scholar] [CrossRef]
- Mishra, R.K.; Murali, G.; Kim, T.-H.; Kim, J.H.; Lim, Y.J.; Kim, B.-S.; Sahay, P.P.; Lee, S.H. Nanocube In2O3@RGO heterostructure based gas sensor for acetone and formaldehyde detection. RSC Adv. 2017, 7, 38714–38724. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Li, F.; Zhang, N.; Ruan, S.; Zhang, H.; Chen, Y. Improved gas sensing properties of silver-functionalized ZnSnO3 hollow nanocubes. Inorg. Chem. Front. 2018, 5, 2123–2131. [Google Scholar] [CrossRef]
- Lee, J.E.; Lim, C.K.; Park, H.J.; Song, H.; Choi, S.-Y.; Lee, D.-S. ZnO–CuO Core-Hollow Cube Nanostructures for Highly Sensitive Acetone Gas Sensors at the ppb Level. ACS Appl. Mater. Interfaces 2020, 12, 35688–35697. [Google Scholar] [CrossRef]
- Wang, X.-F.; Ma, W.; Jiang, F.; Cao, E.-S.; Sun, K.-M.; Cheng, L.; Song, X.-Z. Prussian Blue analogue derived porous NiFe2O4 nanocubes for low-concentration acetone sensing at low working temperature. Chem. Eng. J. 2018, 338, 504–512. [Google Scholar] [CrossRef]
- Zhang, N.; Li, H.; Xu, Z.; Yuan, R.; Xu, Y.; Cui, Y. Enhanced Acetone Sensing Property of a Sacrificial Template Based on Cubic-Like MOF-5 Doped by Ni Nanoparticles. Nanomaterials 2020, 10, 386. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Zhou, X.; Gong, Y.; Han, N.; Liu, H.; Chen, Y. MOF-derived hierarchical ZnO/ZnFe2O4 hollow cubes for enhanced acetone gas-sensing performance. RSC Adv. 2017, 7, 34609–34617. [Google Scholar] [CrossRef] [Green Version]
- Koo, W.-T.; Yu, S.; Choi, S.-J.; Jang, J.-S.; Cheong, J.Y.; Kim, I.-D. Nanoscale PdO Catalyst Functionalized Co3O4 Hollow Nanocages Using MOF Templates for Selective Detection of Acetone Molecules in Exhaled Breath. ACS Appl. Mater. Interfaces 2017, 9, 8201–8210. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, S.; Shao, M.; Huang, J.; Deng, X.; Hou, P.; Xu, X. Fabrication of ZnO/ZnFe2O4 hollow nanocages through metal organic frameworks route with enhanced gas sensing properties. Sens. Actuators B 2017, 251, 27–33. [Google Scholar] [CrossRef]
- Zhou, T.; Liu, X.; Zhang, R.; Wang, Y.; Zhang, T. NiO/NiCo2O4 Truncated Nanocages with PdO Catalyst Functionalization as Sensing Layers for Acetone Detection. ACS Appl. Mater. Interfaces 2018, 10, 37242–37250. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Fu, Z.; Wang, T.; Lei, W.; Sun, P.; Sui, Y.; Zou, B. A rational design of hollow nanocages Ag@CuO-TiO2 for enhanced acetone sensing performance. Sens. Actuators B 2019, 295, 70–78. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, L.; Wen, Z.; Ye, Z. Controllable synthesis of Co3O4 crossed nanosheet arrays toward an acetone gas sensor. Sens. Actuators B 2017, 238, 1052–1059. [Google Scholar] [CrossRef]
- Li, S.-M.; Zhang, L.-X.; Zhu, M.-Y.; Ji, G.-J.; Zhao, L.-X.; Yin, J.; Bie, L.-J. Acetone sensing of ZnO nanosheets synthesized using room-temperature precipitation. Sens. Actuators B 2017, 249, 611–623. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Wang, L.; Tian, H.; Zeng, Y. Controllable assembly of sandwich-structured SnO2/Fe2O3 multilayer nanosheets for high sensitive acetone detection. Mater. Lett. 2018, 221, 57–61. [Google Scholar] [CrossRef]
- Dey, S.; Santra, S.; Guha, P.K.; Ray, S.K. Liquid Exfoliated NiO Nanosheets for Trace Level Detection of Acetone Vapors. IEEE Trans. Electron Devices 2019, 66, 3568–3572. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, L.; Chen, W.; Peng, Z.; Li, Y. A strategy for supportless sensors: Fluorine doped TiO2 nanosheets directly grown onto Ti foam enabling highly sensitive detection toward acetone. Sens. Actuators B 2020, 322, 128633. [Google Scholar] [CrossRef]
- Kim, S.-H.; Shim, G.-I.; Choi, S.-Y. Fabrication of Nb-doped ZnO nanowall structure by RF magnetron sputter for enhanced gas-sensing properties. J. Alloys Compd. 2017, 698, 77–86. [Google Scholar] [CrossRef]
- Hien, V.X.; Minh, N.H.; Son, D.T.; Nghi, N.T.; Phuoc, L.H.; Khoa, C.T.; Vuong, D.D.; Chien, N.D.; Heo, Y.-W. Acetone sensing properties of CuO nanowalls synthesized via oxidation of Cu foil in aqueous NH4OH. Vacuum 2018, 150, 129–135. [Google Scholar] [CrossRef]
- Urso, M.; Leonardi, S.G.; Neri, G.; Petralia, S.; Conoci, S.; Priolo, F.; Mirabella, S. Acetone sensing and modelling by low-cost NiO nanowalls. Mater. Lett. 2020, 262, 127043. [Google Scholar] [CrossRef]
- Choi, H.; Kwon, S.H.; Kang, H.; Kim, J.H.; Choi, W. Zinc-oxide-deposited Carbon Nanowalls for Acetone Sensing. Thin Solid Films 2020, 700, 137887. [Google Scholar] [CrossRef]
- Dwivedi, P.; Dhanekar, S.; Das, S. Synthesis ofα-MoO3nano-flakes by dry oxidation of RF sputtered Mo thin films and their application in gas sensing. Semicond. Sci. Technol. 2016, 31, 115010. [Google Scholar] [CrossRef]
- Afsar, M.F.; Rafiq, M.A.; Tok, A.I.Y. Two-dimensional SnS nanoflakes: Synthesis and application to acetone and alcohol sensors. RSC Adv. 2017, 7, 21556–21566. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.-Y.; Koh, H.-J.; Yoo, H.-W.; Kim, J.-S.; Jung, H.-T. Tunable Volatile-Organic-Compound Sensor by Using Au Nanoparticle Incorporation on MoS2. ACS Sens. 2017, 2, 183–189. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, Y.; Zhang, Z.; Cao, J. Highly Sensitive Acetone Gas Sensor Based on g-C3N4 Decorated MgFe2O4 Porous Microspheres Composites. Sensors 2018, 18, 2211. [Google Scholar] [CrossRef] [Green Version]
- Qu, F.; Zhang, N.; Zhang, S.; Zhao, R.; Yao, D.; Ruan, S.; Yang, M. Construction of Co3O4/CoWO4 core-shell urchin-like microspheres through ion-exchange method for high-performance acetone gas sensing performance. Sens. Actuators B 2020, 309, 127711. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, L.; Wang, B.; Sun, P.; Wang, Q.; Gao, Y.; Liang, X.; Zhang, T.; Lu, G. Acetone gas sensor based on NiO/ZnO hollow spheres: Fast response and recovery, and low (ppb) detection limit. J. Colloid Interface Sci. 2017, 495, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, H.; Liu, J.; Yin, M.; Yu, L.; Zhou, J.; Liu, Y.; Qiao, F. High-performance gas sensors based on the WO3-SnO2 nanosphere composites. J. Alloys Compd. 2019, 782, 789–795. [Google Scholar] [CrossRef]
- Jaisutti, R.; Lee, M.; Kim, J.; Choi, S.; Ha, T.-J.; Kim, J.; Kim, H.; Park, S.K.; Kim, Y.-H. Ultrasensitive Room-Temperature Operable Gas Sensors Using p-Type Na:ZnO Nanoflowers for Diabetes Detection. ACS Appl. Mater. Interfaces 2017, 9, 8796–8804. [Google Scholar] [CrossRef]
- Chen, F.; Yang, M.; Wang, X.; Song, Y.; Guo, L.; Xie, N.; Kou, X.; Xu, X.; Sun, Y.; Lu, G. Template-free synthesis of cubic-rhombohedral-In2O3 flower for ppb level acetone detection. Sens. Actuators B 2019, 290, 459–466. [Google Scholar] [CrossRef]
- Wang, P.; Dong, T.; Jia, C.; Yang, P. Ultraselective acetone-gas sensor based ZnO flowers functionalized by Au nanoparticle loading on certain facet. Sens. Actuators B 2019, 288, 1–11. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, C.; Qu, F.; Liu, S.; Lin, C.-T.; Du, S.; Chen, Y.; Meng, F.; Yang, M. ZnO nanoflowers modified with RuO2 for enhancing acetone sensing performance. Nanotechnology 2019, 31, 115502. [Google Scholar] [CrossRef]
- Ma, T.; Zheng, L.; Zhao, Y.; Xu, Y.; Zhang, J.; Liu, X. Highly Porous Double-Shelled Hollow Hematite Nanoparticles for Gas Sensing. ACS Appl. Nano Mater. 2019, 2, 2347–2357. [Google Scholar] [CrossRef]
- Xia, J.; Diao, K.; Zheng, Z.; Cui, X. Porous Au/ZnO nanoparticles synthesised through a metal organic framework (MOF) route for enhanced acetone gas-sensing. RSC Adv. 2017, 7, 38444–38451. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Tan, J.; Dun, M.; Huang, X. Porous ZnFe2O4 nanorods with net-worked nanostructure for highly sensor response and fast response acetone gas sensor. Sens. Actuators B 2017, 248, 85–91. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Ma, Q.; Che, Q.; Wang, J.; Wang, G.; Yang, P. Morphology-controlled porous α-Fe2O3/SnO2 nanorods with uniform surface heterostructures and their enhanced acetone gas-sensing properties. Mater. Lett. 2018, 211, 212–215. [Google Scholar] [CrossRef]
- Xu, Y.; Lou, C.; Zheng, L.; Zheng, W.; Liu, X.; Kumar, M.; Zhang, J. Highly sensitive and selective detection of acetone based on platinum sensitized porous tungsten oxide nanospheres. Sens. Actuators B 2020, 307, 127616. [Google Scholar] [CrossRef]
- Chao, J.; Chen, Y.; Xing, S.; Zhang, D.; Shen, W. Facile fabrication of ZnO/C nanoporous fibers and ZnO hollow spheres for high performance gas sensor. Sens. Actuators B 2019, 298, 126927. [Google Scholar] [CrossRef]
- Quan, W.; Hu, X.; Min, X.; Qiu, J.; Tian, R.; Ji, P.; Qin, W.; Wang, H.; Pan, T.; Cheng, S.; et al. A Highly Sensitive and Selective ppb-Level Acetone Sensor Based on a Pt-Doped 3D Porous SnO2 Hierarchical Structure. Sensors 2020, 20, 1150. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Dong, Z.; Liu, S.; Shi, Y.; Dong, Y.; Feng, W. Maize straw-templated hierarchical porous ZnO:Ni with enhanced acetone gas sensing properties. Sens. Actuators B 2017, 243, 1224–1230. [Google Scholar] [CrossRef]
- Li, X.; Lu, D.; Shao, C.; Lu, G.; Li, X.; Liu, Y. Hollow CuFe2O4/α-Fe2O3 composite with ultrathin porous shell for acetone detection at ppb levels. Sens. Actuators B 2018, 258, 436–446. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, B.; Liu, W.; Zhou, X.; Liu, M.; Sun, X.; Lv, J.; Zhang, L.; Xu, W.; Bai, X.; et al. Highly sensitive and selective acetone sensor based on three-dimensional ordered WO3/Au nanocomposite with enhanced performance. Sens. Actuators B 2020, 320, 128405. [Google Scholar] [CrossRef]
- Choi, H.-J.; Choi, S.-J.; Choo, S.; Kim, I.-D.; Lee, H. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules. Sci. Rep. 2016, 6, 18731. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Guo, J.; Yang, W.; Shi, C.; Liu, M.; Zheng, Y.; Xu, J.; Chen, P.; Huang, T.; Yang, Y. Synthesis of three-dimensional flower-like hierarchical ZnO nanostructure and its enhanced acetone gas sensing properties. J. Alloys Compd. 2016, 654, 371–378. [Google Scholar] [CrossRef]
- Wang, L.; Fu, H.; Jin, Q.; Jin, H.; Haick, H.; Wang, S.; Yu, K.; Deng, S.; Wang, Y. Directly transforming SnS2 nanosheets to hierarchical SnO2 nanotubes: Towards sensitive and selective sensing of acetone at relatively low operating temperatures. Sens. Actuators B 2019, 292, 148–155. [Google Scholar] [CrossRef]
- Xing, R.; Sheng, K.; Xu, L.; Liu, W.; Song, J.; Song, H. Three-dimensional In2O3–CuO inverse opals: Synthesis and improved gas sensing properties towards acetone. RSC Adv. 2016, 6, 57389–57395. [Google Scholar] [CrossRef]
- Dankeaw, A.; Poungchan, G.; Panapoy, M.; Ksapabutr, B. In-situ one-step method for fabricating three-dimensional grass-like carbon-doped ZrO2 films for room temperature alcohol and acetone sensors. Sens. Actuators B 2017, 242, 202–214. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, L.; Liu, Y.; Liu, D.; Liu, F.; Liu, F.; Yan, X.; Liang, X.; Gao, Y.; Lu, G. Gas sensor based on samarium oxide loaded mulberry-shaped tin oxide for highly selective and sub ppm-level acetone detection. J. Colloid Interface Sci. 2018, 531, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zeng, W.; Li, Y. A novel cactus-like WO3-SnO2 nanocomposite and its acetone gas sensing properties. Mater. Lett. 2018, 231, 5–7. [Google Scholar] [CrossRef]
- Shen, J.-Y.; Wang, M.-D.; Wang, Y.-F.; Hu, J.-Y.; Zhu, Y.; Zhang, Y.X.; Li, Z.-J.; Yao, H.-C. Iron and carbon codoped WO3 with hierarchical walnut-like microstructure for highly sensitive and selective acetone sensor. Sens. Actuators B 2018, 256, 27–37. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, Y.; Guo, P.; Li, J.; Chen, C.; Wang, T.; Sun, K.; He, D. Cr-Doped Urchin-Like WO3 Hollow Spheres: The Cooperative Modulation of Crystal Growth and Energy-Band Structure for High-Sensitive Acetone Detection. Sensors 2020, 20, 3473. [Google Scholar] [CrossRef]
- Chang, X.; Qiao, X.; Li, K.; Wang, P.; Xiong, Y.; Li, X.; Xia, F.; Xue, Q. UV assisted ppb-level acetone detection based on hollow ZnO/MoS2 nanosheets core/shell heterostructures at low temperature. Sens. Actuators B 2020, 317, 128208. [Google Scholar] [CrossRef]
- Perfecto, T.M.; Zito, C.A.; Volanti, D.P. Room-temperature volatile organic compounds sensing based on WO3·0.33H2O, hexagonal-WO3, and their reduced graphene oxide composites. RSC Adv. 2016, 6, 105171–105179. [Google Scholar] [CrossRef]
- Hu, J.; Zou, C.; Su, Y.; Li, M.; Yang, Z.; Ge, M.; Zhang, Y. One-step synthesis of 2D C3N4-tin oxide gas sensors for enhanced acetone vapor detection. Sens. Actuators B 2017, 253, 641–651. [Google Scholar] [CrossRef]
- Tomer, V.K.; Singh, K.; Kaur, H.; Shorie, M.; Sabherwal, P. Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor. Sens. Actuators B 2017, 253, 703–713. [Google Scholar] [CrossRef]
- Zhang, C.; Li, L.; Hou, L.; Chen, W. Fabrication of Co3O4 nanowires assembled on the surface of hollow carbon spheres for acetone gas sensing. Sens. Actuators B 2019, 291, 130–140. [Google Scholar] [CrossRef]
- Cao, E.; Song, G.; Guo, Z.; Zhang, Y.; Hao, W.; Sun, L.; Nie, Z. Acetone sensing characteristics of Fe2O3/In2O3 nanocomposite. Mater. Lett. 2020, 261, 126985. [Google Scholar] [CrossRef]
- Dyndal, K.; Zarzycki, A.; Andrysiewicz, W.; Grochala, D.; Marszalek, K.; Rydosz, A. CuO-Ga2O3 Thin Films as a Gas-Sensitive Material for Acetone Detection. Sensors 2020, 20, 3142. [Google Scholar] [CrossRef]
- Qu, F.; Yuan, Y.; Yang, M. Programmed Synthesis of Sn3N4 Nanoparticles via a Soft Chemistry Approach with Urea: Application for Ethanol Vapor Sensing. Chem. Mater. 2017, 29, 969–974. [Google Scholar] [CrossRef]
- Lin, Z.; Li, N.; Chen, Z.; Fu, P. The effect of Ni doping concentration on the gas sensing properties of Ni doped SnO2. Sens. Actuators B 2017, 239, 501–510. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, X.; Sui, L.; Wang, W.; Zhou, X.; Cheng, X.; Gao, S.; Xu, Y.; Huo, L. C-doped TiO2 nanoparticles to detect alcohols with different carbon chains and their sensing mechanism analysis. Sens. Actuators B 2020, 312, 127942. [Google Scholar] [CrossRef]
- Ma, Z.-H.; Yu, R.-T.; Song, J.-M. Facile synthesis of Pr-doped In2O3 nanoparticles and their high gas sensing performance for ethanol. Sens. Actuators B 2020, 305, 127377. [Google Scholar] [CrossRef]
- Cao, E.; Wu, A.; Wang, H.; Zhang, Y.; Hao, W.; Sun, L. Enhanced Ethanol Sensing Performance of Au and Cl Comodified LaFeO3 Nanoparticles. ACS Appl. Nano Mater. 2019, 2, 1541–1551. [Google Scholar] [CrossRef]
- Cao, K.; Cao, E.; Zhang, Y.; Hao, W.; Sun, L.; Peng, H. The influence of nonstoichiometry on electrical transport and ethanol sensing characteristics for nanocrystalline LaFexO3−δ sensors. Sens. Actuators B 2016, 230, 592–599. [Google Scholar] [CrossRef]
- Cao, E.; Wang, H.; Wang, X.; Yang, Y.; Hao, W.; Sun, L.; Zhang, Y. Enhanced ethanol sensing performance for chlorine doped nanocrystalline LaFeO3-δ powders by citric sol-gel method. Sens. Actuators B 2017, 251, 885–893. [Google Scholar] [CrossRef]
- Sau, S.; Chakraborty, S.; Das, T.; Pal, M. Ethanol Sensing Properties of Nanocrystalline α-MoO3. Front. Mater. 2019, 6. [Google Scholar] [CrossRef]
- Lupan, O.; Cretu, V.; Postica, V.; Ababii, N.; Polonskyi, O.; Kaidas, V.; Schütt, F.; Mishra, Y.K.; Monaico, E.; Tiginyanu, I.; et al. Enhanced ethanol vapour sensing performances of copper oxide nanocrystals with mixed phases. Sens. Actuators B 2016, 224, 434–448. [Google Scholar] [CrossRef]
- Xiaofeng, W.; Ma, W.; Sun, K.; Hu, J.; Qin, H. Nanocrystalline Gd1–xCaxFeO3 sensors for detection of methanol gas. J. Rare Earths 2017, 35, 690–696. [Google Scholar] [CrossRef]
- Wu, Y.; Jiang, T.; Shi, T.; Sun, B.; Tang, Z.; Liao, G. Au modified ZnO nanowires for ethanol gas sensing. Sci. China Technol. Sci. 2017, 60, 71–77. [Google Scholar] [CrossRef]
- Choi, K.S.; Park, S.; Chang, S.-P. Enhanced ethanol sensing properties based on SnO2 nanowires coated with Fe2O3 nanoparticles. Sens. Actuators B 2017, 238, 871–879. [Google Scholar] [CrossRef]
- Kim, K.-K.; Kim, D.; Kang, S.-H.; Park, S. Detection of ethanol gas using In2O3 nanoparticle-decorated ZnS nanowires. Sens. Actuators B 2017, 248, 43–49. [Google Scholar] [CrossRef]
- Song, L.; Dou, K.; Wang, R.; Leng, P.; Luo, L.; Xi, Y.; Kaun, C.-C.; Han, N.; Wang, F.; Chen, Y. Sr-Doped Cubic In2O3/Rhombohedral In2O3 Homojunction Nanowires for Highly Sensitive and Selective Breath Ethanol Sensing: Experiment and DFT Simulation Studies. ACS Appl. Mater. Interfaces 2020, 12, 1270–1279. [Google Scholar] [CrossRef]
- Choi, S.; Bonyani, M.; Sun, G.-J.; Lee, J.K.; Hyun, S.K.; Lee, C. Cr2O3 nanoparticle-functionalized WO3 nanorods for ethanol gas sensors. Appl. Surf. Sci. 2018, 432, 241–249. [Google Scholar] [CrossRef]
- Shankar, P.; Rayappan, J.B.B. Room temperature ethanol sensing properties of ZnO nanorods prepared using an electrospinning technique. J. Mater. Chem. C 2017, 5, 10869–10880. [Google Scholar] [CrossRef]
- Zhao, S.; Shen, Y.; Yan, X.; Zhou, P.; Yin, Y.; Lu, R.; Han, C.; Cui, B.; Wei, D. Complex-surfactant-assisted hydrothermal synthesis of one-dimensional ZnO nanorods for high-performance ethanol gas sensor. Sens. Actuators B 2019, 286, 501–511. [Google Scholar] [CrossRef]
- Cao, P.; Yang, Z.; Navale, S.T.; Han, S.; Liu, X.; Liu, W.; Lu, Y.; Stadler, F.J.; Zhu, D. Ethanol sensing behavior of Pd-nanoparticles decorated ZnO-nanorod based chemiresistive gas sensors. Sens. Actuators B 2019, 298, 126850. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, S.; Yu, Q.; Zhao, L.; Sun, P.; Wang, T.; Liu, F.; Yan, X.; Gao, Y.; Liang, X.; et al. One step synthesis of branched SnO2/ZnO heterostructures and their enhanced gas-sensing properties. Sens. Actuators B 2019, 281, 415–423. [Google Scholar] [CrossRef]
- Perfecto, T.M.; Zito, C.A.; Mazon, T.; Volanti, D.P. Flexible room-temperature volatile organic compound sensors based on reduced graphene oxide–WO3·0.33H2O nano-needles. J. Mater. Chem. C 2018, 6, 2822–2829. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Wan, W.; Ren, X.; Zhao, H. Surface defect and gas-sensing performance of the well-aligned Sm-doped SnO2 nanoarrays. Mater. Lett. 2018, 218, 22–26. [Google Scholar] [CrossRef]
- Han, T.; Ma, S.Y.; Xu, X.L.; Xu, X.H.; Pei, S.T.; Tie, Y.; Cao, P.F.; Liu, W.W.; Wang, B.J.; Zhang, R.; et al. Rough SmFeO3 nanofibers as an optimization ethylene glycol gas sensor prepared by electrospinning. Mater. Lett. 2020, 268, 127575. [Google Scholar] [CrossRef]
- Feng, C.; Kou, X.; Chen, B.; Qian, G.; Sun, Y.; Lu, G. One-pot synthesis of in doped NiO nanofibers and their gas sensing properties. Sens. Actuators B 2017, 253, 584–591. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, P.; Li, J.; Matras-Postolek, K.; Yue, Y.; Huang, B. Formation of SiO2@SnO2 core–shell nanofibers and their gas sensing properties. RSC Adv. 2016, 6, 13371–13376. [Google Scholar] [CrossRef]
- Jun, L.; Chen, Q.; Fu, W.; Yang, Y.; Zhu, W.; Zhang, J. Electrospun Yb-Doped In2O3 Nanofiber Field-Effect Transistors for Highly Sensitive Ethanol Sensors. ACS Appl. Mater. Interfaces 2020, 12, 38425–38434. [Google Scholar] [CrossRef] [PubMed]
- Alali, K.T.; Lu, Z.; Zhang, H.; Liu, J.; Liu, Q.; Li, R.; Aljebawi, K.; Wang, J. P–p heterojunction CuO/CuCo2O4 nanotubes synthesized via electrospinning technology for detecting n-propanol gas at room temperature. Inorg. Chem. Front. 2017, 4, 1219–1230. [Google Scholar] [CrossRef]
- Su, C.; Zhang, L.; Han, Y.; Ren, C.; Zeng, M.; Zhou, Z.; Su, Y.; Hu, N.; Wei, H.; Yang, Z. Controllable synthesis of heterostructured CuO–NiO nanotubes and their synergistic effect for glycol gas sensing. Sens. Actuators B 2020, 304, 127347. [Google Scholar] [CrossRef]
- Zhang, L.; He, J.; Jiao, W. Synthesis and gas sensing performance of NiO decorated SnO2 vertical-standing nanotubes composite thin films. Sens. Actuators B 2019, 281, 326–334. [Google Scholar] [CrossRef]
- Zhao, C.; Gong, H.; Niu, G.; Wang, F. Electrospun Ca-doped In2O3 nanotubes for ethanol detection with enhanced sensitivity and selectivity. Sens. Actuators B 2019, 299, 126946. [Google Scholar] [CrossRef]
- Bai, J.; Wang, Q.; Wang, Y.; Cheng, X.; Yang, Z.; Gu, X.; Huang, B.; Sun, G.; Zhang, Z.; Pan, X.; et al. Role of nickel dopant on gas response and selectivity of electrospun indium oxide nanotubes. J. Colloid Interface Sci. 2020, 560, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Bai, J.; Hu, Q.; Hao, J.; Cheng, X.; Li, J.; Xie, E.; Wang, Y.; Pan, X. W-doped NiO as a material for selective resistive ethanol sensors. Sens. Actuators B 2020, 308, 127668. [Google Scholar] [CrossRef]
- Li, Y.; Yang, H.; Tian, J.; Hu, X.; Cui, H. Synthesis of In2O3 nanoparticle/TiO2 nanobelt heterostructures for near room temperature ethanol sensing. RSC Adv. 2017, 7, 11503–11509. [Google Scholar] [CrossRef] [Green Version]
- Mo, Y.; Tan, Z.; Sun, L.; Lu, Y.; Liu, X. Ethanol-sensing properties of α-MoO3 nanobelts synthesized by hydrothermal method. J. Alloys Compd. 2020, 812, 152166. [Google Scholar] [CrossRef]
- Yang, S.; Liu, Y.; Chen, T.; Jin, W.; Yang, T.; Cao, M.; Liu, S.; Zhou, J.; Zakharova, G.S.; Chen, W. Zn doped MoO3 nanobelts and the enhanced gas sensing properties to ethanol. Appl. Surf. Sci. 2017, 393, 377–384. [Google Scholar] [CrossRef]
- Wang, M.; Hou, T.; Shen, Z.; Zhao, X.; Ji, H. MOF-derived Fe2O3: Phase control and effects of phase composition on gas sensing performance. Sens. Actuators B 2019, 292, 171–179. [Google Scholar] [CrossRef]
- Nguyen, T.T.D.; Choi, H.-N.; Ahemad, M.J.; Van Dao, D.; Lee, I.-H.; Yu, Y.-T. Hydrothermal synthesis of In2O3 nanocubes for highly responsive and selective ethanol gas sensing. J. Alloys Compd. 2020, 820, 153133. [Google Scholar] [CrossRef]
- Zhu, L.; Zeng, W.; Li, Y.; Yang, J. Enhanced ethanol gas-sensing property based on hollow MoO3 microcages. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 106, 170–175. [Google Scholar] [CrossRef]
- Zhang, X.; Lan, W.; Xu, J.; Luo, Y.; Pan, J.; Liao, C.; Yang, L.; Tan, W.; Huang, X. ZIF-8 derived hierarchical hollow ZnO nanocages with quantum dots for sensitive ethanol gas detection. Sens. Actuators B 2019, 289, 144–152. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, H.; Zhang, L.; Leng, D.; Zhang, Y.; Wang, W.; Gao, Y.; Lu, H.; Gao, J.; Zhu, G.; et al. Metal–organic framework-derived ZnO hollow nanocages functionalized with nanoscale Ag catalysts for enhanced ethanol sensing properties. Sens. Actuators B 2019, 291, 458–469. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, M.; Lu, Q.; Hu, J.; Wang, H.; Li, K.; Li, K.; Zhang, J.; Zhu, Z.; Liu, Q. Design of hollow dodecahedral Cu2O nanocages for ethanol gas sensing. Mater. Lett. 2019, 247, 15–18. [Google Scholar] [CrossRef]
- Cao, F.; Li, C.; Li, M.; Li, H.; Huang, X.; Yang, B. Direct growth of Al-doped ZnO ultrathin nanosheets on electrode for ethanol gas sensor application. Appl. Surf. Sci. 2018, 447, 173–181. [Google Scholar] [CrossRef]
- Niu, G.; Zhao, C.; Gong, H.; Yang, Z.; Leng, X.; Wang, F. NiO nanoparticle-decorated SnO2 nanosheets for ethanol sensing with enhanced moisture resistance. Microsyst. Nanoeng. 2019, 5, 21. [Google Scholar] [CrossRef]
- Liu, X.; Sun, Y.; Yu, M.; Yin, Y.; Du, B.; Tang, W.; Jiang, T.; Yang, B.; Cao, W.; Ashfold, M.N.R. Enhanced ethanol sensing properties of ultrathin ZnO nanosheets decorated with CuO nanoparticles. Sens. Actuators B 2018, 255, 3384–3390. [Google Scholar] [CrossRef] [Green Version]
- Bharatula, L.D.; Erande, M.B.; Mulla, I.S.; Rout, C.S.; Late, D.J. SnS2 nanoflakes for efficient humidity and alcohol sensing at room temperature. RSC Adv. 2016, 6, 105421–105427. [Google Scholar] [CrossRef]
- Liu, X.-H.; Yin, P.-F.; Kulinich, S.A.; Zhou, Y.-Z.; Mao, J.; Ling, T.; Du, X.-W. Arrays of Ultrathin CdS Nanoflakes with High-Energy Surface for Efficient Gas Detection. ACS Appl. Mater. Interfaces 2017, 9, 602–609. [Google Scholar] [CrossRef]
- Darvishnejad, M.H.; Anaraki Firooz, A.; Beheshtian, J.; Khodadadi, A.A. Highly sensitive and selective ethanol and acetone gas sensors by adding some dopants (Mn, Fe, Co, Ni) onto hexagonal ZnO plates. RSC Adv. 2016, 6, 7838–7845. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Ma, Q.; Che, Q.; Wang, J.; Wang, G.; Yang, P. ZIF-8 derived hexagonal-like α-Fe2O3/ZnO/Au nanoplates with tunable surface heterostructures for superior ethanol gas-sensing performance. Appl. Surf. Sci. 2018, 439, 649–659. [Google Scholar] [CrossRef]
- Phuoc, L.H.; Tho, D.D.; Dung, N.T.; Hien, V.X.; Vuong, D.D.; Chien, N.D. Enhancement of ethanol-sensing properties of ZnO nanoplates by UV illumination. Bull. Mater. Sci. 2019, 42, 72. [Google Scholar] [CrossRef] [Green Version]
- An, D.; Mao, N.; Deng, G.; Zou, Y.; Li, Y.; Wei, T.; Lian, X. Ethanol gas-sensing characteristic of the Zn2SnO4 nanospheres. Ceram. Inter. 2016, 42, 3535–3541. [Google Scholar] [CrossRef]
- Wang, C.; Kou, X.; Xie, N.; Guo, L.; Sun, Y.; Chuai, X.; Ma, J.; Sun, P.; Wang, Y.; Lu, G. Detection of Methanol with Fast Response by Monodispersed Indium Tungsten Oxide Ellipsoidal Nanospheres. ACS Sens. 2017, 2, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Sun, X.; Duan, X.; Zhang, C.; Zhao, K.; Xu, X. Core-shell Ag@In2O3 hollow hetero-nanostructures for selective ethanol detection in air. Sens. Actuators B 2020, 305, 127450. [Google Scholar] [CrossRef]
- Yin, Y.; Shen, Y.; Zhou, P.; Lu, R.; Li, A.; Zhao, S.; Liu, W.; Wei, D.; Wei, K. Fabrication, characterization and n-propanol sensing properties of perovskite-type ZnSnO3 nanospheres based gas sensor. Appl. Surf. Sci. 2020, 509, 145335. [Google Scholar] [CrossRef]
- Han, B.; Liu, X.; Xing, X.; Chen, N.; Xiao, X.; Liu, S.; Wang, Y. A high response butanol gas sensor based on ZnO hollow spheres. Sens. Actuators B 2016, 237, 423–430. [Google Scholar] [CrossRef]
- Yang, H.M.; Ma, S.Y.; Yang, G.J.; Jin, W.X.; Wang, T.T.; Jiang, X.H.; Li, W.Q. High sensitive and low concentration detection of methanol by a gas sensor based on one-step synthesis α-Fe2O3 hollow spheres. Mater. Lett. 2016, 169, 73–76. [Google Scholar] [CrossRef]
- Acharyya, D.; Huang, K.Y.; Chattopadhyay, P.P.; Ho, M.S.; Fecht, H.J.; Bhattacharyya, P. Hybrid 3D structures of ZnO nanoflowers and PdO nanoparticles as a highly selective methanol sensor. Analyst 2016, 141, 2977–2989. [Google Scholar] [CrossRef]
- Carbone, M.; Tagliatesta, P. NiO Grained-Flowers and Nanoparticles for Ethanol Sensing. Materials 2020, 13, 1880. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Xia, J.; Liu, J.; Liu, Q.; Huang, G.; Zhang, H.; Jing, X.; Li, R.; Wang, J. RGO nanosheets modified NiCo2S4 nanoflowers for improved ethanol sensing performance at low temperature. Chem. Phys. Lett. 2018, 703, 80–85. [Google Scholar] [CrossRef]
- Maity, I.; Bhattacharyya, P. Potentiallity of Surface Modified TiO2 Nanoflowers for Alcohol Sensing Application. In Proceedings of the 2019 2nd International Symposium on Devices, Circuits and Systems (ISDCS), Higashi-Hiroshima, Japan, 6–8 March 2019; pp. 1–4. [Google Scholar]
- Xing, X.; Li, Y.; Deng, D.; Chen, N.; Liu, X.; Xiao, X.; Wang, Y. Ag-Functionalized macro-/mesoporous AZO synthesized by solution combustion for VOCs gas sensing application. RSC Adv. 2016, 6, 101304–101312. [Google Scholar] [CrossRef]
- Xing, X.; Chen, T.; Li, Y.; Deng, D.; Xiao, X.; Wang, Y. Flash synthesis of Al-doping macro-/nanoporous ZnO from self-sustained decomposition of Zn-based complex for superior gas-sensing application to n-butanol. Sens. Actuators B 2016, 237, 90–98. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, B.; Liu, J.; Yang, Q.; Cui, X.; Gao, Y.; Chuai, X.; Liu, F.; Sun, P.; Liang, X.; et al. Au-loaded mesoporous WO3: Preparation and n-butanol sensing performances. Sens. Actuators B 2016, 236, 67–76. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, Z.; Han, D.; Gu, F. Highly Sensitive and Selective Ethanol Sensor Fabricated with In-Doped 3DOM ZnO. ACS Appl. Mater. Interfaces 2016, 8, 5466–5474. [Google Scholar] [CrossRef] [PubMed]
- Saboor, F.H.; Khodadadi, A.A.; Mortazavi, Y.; Asgari, M. Microemulsion synthesized silica/ZnO stable core/shell sensors highly selective to ethanol with minimum sensitivity to humidity. Sens. Actuators B 2017, 238, 1070–1083. [Google Scholar] [CrossRef]
- Tomer, V.K.; Malik, R.; Kailasam, K. Near-Room-Temperature Ethanol Detection Using Ag-Loaded Mesoporous Carbon Nitrides. ACS Omega 2017, 2, 3658–3668. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Xu, S.; Yu, G.; Liu, S. Efficient hierarchical mixed Pd/SnO2 porous architecture deposited microheater for low power ethanol gas sensor. Sens. Actuators B 2018, 255, 2002–2010. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, G.; Wang, H.; Cui, H.; Zhan, X.; Sang, L.; Zhang, G. Preparation of meso-porous SnO2 fibers with enhanced sensitivity for n-butanol. Ceram. Int. 2018, 44, 4990–4995. [Google Scholar] [CrossRef]
- Zhao, T.; Qiu, P.; Fan, Y.; Yang, J.; Jiang, W.; Wang, L.; Deng, Y.; Luo, W. Hierarchical Branched Mesoporous TiO2–SnO2 Nanocomposites with Well-Defined n–n Heterojunctions for Highly Efficient Ethanol Sensing. Adv. Sci. 2019, 6, 1902008. [Google Scholar] [CrossRef] [Green Version]
- Mo, Y.; Shi, F.; Qin, S.; Tang, P.; Feng, Y.; Zhao, Y.; Li, D. Facile Fabrication of Mesoporous Hierarchical Co-Doped ZnO for Highly Sensitive Ethanol Detection. Ind. Eng. Chem. Res. 2019, 58, 8061–8071. [Google Scholar] [CrossRef]
- Wei, Q.; Song, P.; Yang, Z.; Wang, Q. Hierarchical assembly of Fe2O3 nanorods on SnO2 nanospheres with enhanced ethanol sensing properties. Phys. E Low-Dimens. Syst. Nanostruct. 2018, 103, 156–163. [Google Scholar] [CrossRef]
- Li, H.; Zhu, D.; Yang, Z.; Lu, W.; Pu, Y. The ethanol-sensitive property of hierarchical MoO3-mixed SnO2 aerogels via facile ambient pressure drying. Appl. Surf. Sci. 2019, 489, 384–391. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F.; Chen, X.; Song, X.; Xu, G.; Han, Y.; Tian, J.; Cui, H. In2O3 Nanoparticles Decorated ZnO Hierarchical Structures for n-Butanol Sensor. ACS Appl. Nano Mater. 2020, 3, 3295–3304. [Google Scholar] [CrossRef]
- Wang, L.L.; Li, Z.J.; Luo, L.; Zhao, C.Z.; Kang, L.P.; Liu, D.W. Methanol sensing properties of honeycomb-like SnO2 grown on silicon nanoporous pillar array. J. Alloys Compd. 2016, 682, 170–175. [Google Scholar] [CrossRef]
- Jiao, Z.; Wang, Y.; Ying, M.; Xu, J.; Xu, L.; Zhang, H. Copolymer-assisted fabrication of rambutan-like SnO2 hierarchical nanostructure with enhanced sensitivity for n-butanol. Mater. Chem. Phys. 2016, 172, 113–120. [Google Scholar] [CrossRef]
- Lupan, O.; Postica, V.; Gröttrup, J.; Mishra, A.K.; de Leeuw, N.H.; Carreira, J.F.C.; Rodrigues, J.; Ben Sedrine, N.; Correia, M.R.; Monteiro, T.; et al. Hybridization of Zinc Oxide Tetrapods for Selective Gas Sensing Applications. ACS Appl. Mater. Interfaces 2017, 9, 4084–4099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, R.; Wang, Z.; Yang, Y.; Xing, X.; Zou, T.; Wang, Z.; Wang, Y. Raspberry-like SnO2 hollow nanostructure as a high response sensing material of gas sensor toward n-butanol gas. J. Phys. Chem. Solids 2018, 120, 173–182. [Google Scholar] [CrossRef]
- Li, Y. A novel snowflake-like SnO2 hierarchical architecture with superior gas sensing properties. Phys. E Low-Dimens. Syst. Nanostruct. 2018, 96, 54–56. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Sun, X.; Sun, Y.; Liu, F.; Yan, X.; Wang, C.; Sun, P.; Geyu, L. Fast detection of alcohols by novel sea cucumber-like indium tungsten oxide. Sens. Actuators B 2020, 319, 128158. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Ma, Y.; Li, Y.; Zhang, J.; Ren, X.; Li, C.; Zhao, J.; Zhu, J.; Zhao, H. Hollow Pentagonal-Cone-Structured SnO2 Architectures Assembled with Nanorod Arrays for Low-Temperature Ethanol Sensing. ACS Appl. Nano Mater. 2020, 3, 7720–7731. [Google Scholar] [CrossRef]
- Qi, T.; Yang, X.; Sun, J. Neck-connected ZnO films derived from core-shell zeolitic imidazolate framework-8 (ZIF-8)@ZnO for highly sensitive ethanol gas sensors. Sens. Actuators B 2019, 283, 93–98. [Google Scholar] [CrossRef]
- Zhang, H.; Yi, J. Enhanced ethanol gas sensing performance of ZnO nanoflowers decorated with LaMnO3 perovskite nanoparticles. Mater. Lett. 2018, 216, 196–198. [Google Scholar] [CrossRef]
- Li, Y.; Deng, D.; Xing, X.; Chen, N.; Liu, X.; Xiao, X.; Wang, Y. A high performance methanol gas sensor based on palladium-platinum-In2O3 composited nanocrystalline SnO2. Sens. Actuators B 2016, 237, 133–141. [Google Scholar] [CrossRef]
- Zito, C.A.; Perfecto, T.M.; Volanti, D.P. Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere. Sens. Actuators B 2017, 244, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Muthukumaravel, C.; Karunakaran, U.; Mangamma, G. Local grain-to-grain conductivity in an SnO2–V2O5 nanocomposite ethanol sensor. Nanotechnology 2020, 31, 344001. [Google Scholar] [CrossRef]
- Postica, V.; Hölken, I.; Schneider, V.; Kaidas, V.; Polonskyi, O.; Cretu, V.; Tiginyanu, I.; Faupel, F.; Adelung, R.; Lupan, O. Multifunctional device based on ZnO:Fe nanostructured films with enhanced UV and ultra-fast ethanol vapour sensing. Mater. Sci. Semicond. Proc. 2016, 49, 20–33. [Google Scholar] [CrossRef]
- Cao, J.; Qin, C.; Wang, Y.; Zhang, H.; Zhang, B.; Gong, Y.; Wang, X.; Sun, G.; Bala, H.; Zhang, Z. Synthesis of g-C3N4 nanosheet modified SnO2 composites with improved performance for ethanol gas sensing. RSC Adv. 2017, 7, 25504–25511. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Zhang, C.; Zhang, R.; Gao, X.; He, S.; Liu, M.; Li, X.; Chen, W. 2D ultrathin Co3O4 nanosheet array deposited on 3D carbon foam for enhanced ethanol gas sensing application. Sens. Actuators B 2017, 244, 664–672. [Google Scholar] [CrossRef]
- Kukkar, D.; Vellingiri, K.; Kaur, R.; Bhardwaj, S.K.; Deep, A.; Kim, K.-H. Nanomaterials for sensing of formaldehyde in air: Principles, applications, and performance evaluation. Nano Res. 2019, 12, 225–246. [Google Scholar] [CrossRef]
- Gu, F.; Li, C.; Han, D.; Wang, Z. Manipulating the Defect Structure (VO) of In2O3 Nanoparticles for Enhancement of Formaldehyde Detection. ACS Appl. Mater. Interfaces 2018, 10, 933–942. [Google Scholar] [CrossRef]
- Hussain, M.; Kotova, K.; Lieberzeit, P.A. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM. Sensors 2016, 16, 1011. [Google Scholar] [CrossRef] [Green Version]
- Xiang, D.L.; Hou, S.M.; Tong, D.G. Amorphous Eu0.9Ni0.1B6 Nanoparticles for Formaldehyde Vapor Detection. ACS Appl. Nano Mater. 2019, 2, 4048–4052. [Google Scholar] [CrossRef]
- Hu, J.; Wang, T.; Wang, Y.; Huang, D.; He, G.; Han, Y.; Hu, N.; Su, Y.; Zhou, Z.; Zhang, Y.; et al. Enhanced formaldehyde detection based on Ni doping of SnO2 nanoparticles by one-step synthesis. Sens. Actuators B 2018, 263, 120–128. [Google Scholar] [CrossRef]
- Prajesh, R.; Goyal, V.; Nahid, M.; Saini, V.; Singh, A.K.; Sharma, A.K.; Bhargava, J.; Agarwal, A. Nickel oxide (NiO) thin film optimization by reactive sputtering for highly sensitive formaldehyde sensing. Sens. Actuators B 2020, 318, 128166. [Google Scholar] [CrossRef]
- Castro-Hurtado, I.; Gonzalez-Chávarri, J.; Morandi, S.; Samà, J.; Romano-Rodríguez, A.; Castaño, E.; Mandayo, G.G. Formaldehyde sensing mechanism of SnO2 nanowires grown on-chip by sputtering techniques. RSC Adv. 2016, 6, 18558–18566. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.-Y.; Yuan, K.; Yang, J.-G.; Ma, H.-P.; Wang, T.; Ji, X.-M.; Feng, J.-J.; Devi, A.; Lu, H.-L. Fabrication of heterostructured p-CuO/n-SnO2 core-shell nanowires for enhanced sensitive and selective formaldehyde detection. Sens. Actuators B 2019, 290, 233–241. [Google Scholar] [CrossRef]
- Chen, L.; Cui, J.; Sheng, X.; Xie, T.; Xu, T.; Feng, X. High-Performance Photoelectronic Sensor Using Mesostructured ZnO Nanowires. ACS Sens. 2017, 2, 1567–1572. [Google Scholar] [CrossRef]
- Song, L.; Luo, L.; Xi, Y.; Song, J.; Wang, Y.; Yang, L.; Wang, A.; Chen, Y.; Han, N.; Wang, F. Reduced Graphene Oxide-Coated Si Nanowires for Highly Sensitive and Selective Detection of Indoor Formaldehyde. Nanoscale Res. Lett. 2019, 14, 97. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Hou, C.; De, Q.; Gu, F.; Han, D. One-Step Synthesis of Co-Doped In2O3 Nanorods for High Response of Formaldehyde Sensor at Low Temperature. ACS Sens. 2018, 3, 468–475. [Google Scholar] [CrossRef]
- Zhang, X.; Song, D.; Liu, Q.; Chen, R.; Hou, J.; Liu, J.; Zhang, H.; Yu, J.; Liu, P.; Wang, J. Designed synthesis of Ag-functionalized Ni-doped In2O3 nanorods with enhanced formaldehyde gas sensing properties. J. Mater. Chem. C 2019, 7, 7219–7229. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Zhao, J.; Zhu, Z.; Liu, Q. Ag–LaFeO3 fibers, spheres, and cages for ultrasensitive detection of formaldehyde at low operating temperatures. Phys. Chem. Chem. Phys. 2017, 19, 6973–6980. [Google Scholar] [CrossRef]
- Wei, W.; Guo, S.; Chen, C.; Sun, L.; Chen, Y.; Guo, W.; Ruan, S. High sensitive and fast formaldehyde gas sensor based on Ag-doped LaFeO3 nanofibers. J. Alloys Compd. 2017, 695, 1122–1127. [Google Scholar] [CrossRef]
- Gao, X.; Li, F.; Wang, R.; Zhang, T. A formaldehyde sensor: Significant role of p-n heterojunction in gas-sensitive core-shell nanofibers. Sens. Actuators B 2018, 258, 1230–1241. [Google Scholar] [CrossRef]
- Li, H.; Chu, S.; Ma, Q.; Wang, J.; Che, Q.; Wang, G.; Yang, P. Hierarchical WO3/ZnWO4 1D fibrous heterostructures with tunable in-situ growth of WO3 nanoparticles on surface for efficient low concentration HCHO detection. Sens. Actuators B 2019, 286, 564–574. [Google Scholar] [CrossRef]
- Tie, Y.; Ma, S.Y.; Pei, S.T.; Zhang, Q.X.; Zhu, K.M.; Zhang, R.; Xu, X.H.; Han, T.; Liu, W.W. Pr doped BiFeO3 hollow nanofibers via electrospinning method as a formaldehyde sensor. Sens. Actuators B 2020, 308, 127689. [Google Scholar] [CrossRef]
- Liang, Q.; Zou, X.; Chen, H.; Fan, M.; Li, G.-D. High-performance formaldehyde sensing realized by alkaline-earth metals doped In2O3 nanotubes with optimized surface properties. Sens. Actuators B 2020, 304, 127241. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Wu, Y.; Chen, W.; Qin, Z.; Gong, N.; Yu, D. Highly sensitive formaldehyde resistive sensor based on a single Er-doped SnO2 nanobelt. Phys. B Condens. Matter 2016, 489, 33–38. [Google Scholar] [CrossRef]
- Fu, X.; Yang, P.; Xiao, X.; Zhou, D.; Huang, R.; Zhang, X.; Cao, F.; Xiong, J.; Hu, Y.; Tu, Y.; et al. Ultra-fast and highly selective room-temperature formaldehyde gas sensing of Pt-decorated MoO3 nanobelts. J. Alloys Compd. 2019, 797, 666–675. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, T.; Zhang, R.; Lou, Z.; Deng, J.; Wang, L. Hollow ZnSnO3 Cubes with Controllable Shells Enabling Highly Efficient Chemical Sensing Detection of Formaldehyde Vapors. ACS Appl. Mater. Interfaces 2017, 9, 14525–14533. [Google Scholar] [CrossRef]
- Du, L.; Gu, K.; Zhu, M.; Zhang, J.; Zhang, M. Perovskite-type ZnSn(OH)6 hollow cubes with controllable shells for enhanced formaldehyde sensing performance at low temperature. Sens. Actuators B 2019, 288, 298–306. [Google Scholar] [CrossRef]
- Zhang, N.; Ruan, S.; Qu, F.; Yin, Y.; Li, X.; Wen, S.; Adimi, S.; Yin, J. Metal–organic framework-derived Co3O4/CoFe2O4 double-shelled nanocubes for selective detection of sub-ppm-level formaldehyde. Sens. Actuators B 2019, 298, 126887. [Google Scholar] [CrossRef]
- Cao, Y.; He, Y.; Zou, X.; Li, G.-D. Tungsten oxide clusters decorated ultrathin In2O3 nanosheets for selective detecting formaldehyde. Sens. Actuators B 2017, 252, 232–238. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, L.-X.; Li, M.-W.; Yin, Y.-Y.; Yin, J.; Zhu, M.-Y.; Chen, J.-J.; Wang, Y.; Bie, L.-J. Ultrathin SnO2 nanosheets with dominant high-energy {001} facets for low temperature formaldehyde gas sensor. Sens. Actuators B 2019, 289, 186–194. [Google Scholar] [CrossRef]
- Kim, E.-B.; Seo, H.-K. Highly Sensitive Formaldehyde Detection Using Well-Aligned Zinc Oxide Nanosheets Synthesized by Chemical Bath Deposition Technique. Materials 2019, 12, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, F.; Di, M.; Han, D.; Hong, S.; Wang, Z. Atomically Dispersed Au on In2O3 Nanosheets for Highly Sensitive and Selective Detection of Formaldehyde. ACS Sens. 2020, 5, 2611–2619. [Google Scholar] [CrossRef]
- Li, G.; Cheng, Z.; Xiang, Q.; Yan, L.; Wang, X.; Xu, J. Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sens. Actuators B 2019, 283, 590–601. [Google Scholar] [CrossRef]
- Hayashi, K.; Kataoka, M.; Jippo, H.; Ohfuchi, M.; Sato, S. Vacancy-Assisted Selective Detection of Low-ppb Formaldehyde in Two-Dimensional Layered SnS2. ACS Appl. Mater. Interfaces 2020, 12, 12207–12214. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Liu, T.; Javed, M.S.; Aslam, N.; Zeng, W. Highly reactive 0D ZnS nanospheres and nanoparticles for formaldehyde gas-sensing properties. Sens. Actuators B 2017, 239, 1243–1250. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, S.Y.; Zhang, Q.X.; Zhu, K.M.; Tie, Y.; Pei, S.T.; Wang, B.J.; Zhang, J.L. Highly sensitive formaldehyde gas sensors based on Ag doped Zn2SnO4/SnO2 hollow nanospheres. Mater. Lett. 2019, 254, 178–181. [Google Scholar] [CrossRef]
- Zhang, N.; Lu, Y.; Fan, Y.; Zhou, J.; Li, X.; Adimi, S.; Liu, C.; Ruan, S. Metal–organic framework-derived ZnO/ZnCo2O4 microspheres modified by catalytic PdO nanoparticles for sub-ppm-level formaldehyde detection. Sens. Actuators B 2020, 315, 128118. [Google Scholar] [CrossRef]
- Hu, J.; Wang, H.; Chen, M.; Zhang, Y.; Zhao, X.; Zhang, D.; Lu, Q.; Zhang, J.; Liu, Q. Constructing hierarchical SnO2 nanoflowers for enhanced formaldehyde sensing performances. Mater. Lett. 2020, 263, 126843. [Google Scholar] [CrossRef]
- Yin, F.; Li, Y.; Yue, W.; Gao, S.; Zhang, C.; Chen, Z. Sn3O4/rGO heterostructure as a material for formaldehyde gas sensor with a wide detecting range and low operating temperature. Sens. Actuators B 2020, 312, 127954. [Google Scholar] [CrossRef]
- Zhang, S.; Song, P.; Li, J.; Zhang, J.; Yang, Z.; Wang, Q. Facile approach to prepare hierarchical Au-loaded In2O3 porous nanocubes and their enhanced sensing performance towards formaldehyde. Sens. Actuators B 2017, 241, 1130–1138. [Google Scholar] [CrossRef]
- Xing, X.; Xiao, X.; Wang, L.; Wang, Y. Highly sensitive formaldehyde gas sensor based on hierarchically porous Ag-loaded ZnO heterojunction nanocomposites. Sens. Actuators B 2017, 247, 797–806. [Google Scholar] [CrossRef]
- Malik, R.; Tomer, V.K.; Dankwort, T.; Mishra, Y.K.; Kienle, L. Cubic mesoporous Pd–WO3 loaded graphitic carbon nitride (g-CN) nanohybrids: Highly sensitive and temperature dependent VOC sensors. J. Mater. Chem. A 2018, 6, 10718–10730. [Google Scholar] [CrossRef]
- Wang, D.; Tian, L.; Li, H.; Wan, K.; Yu, X.; Wang, P.; Chen, A.; Wang, X.; Yang, J. Mesoporous Ultrathin SnO2 Nanosheets in Situ Modified by Graphene Oxide for Extraordinary Formaldehyde Detection at Low Temperatures. ACS Appl. Mater. Interfaces 2019, 11, 12808–12818. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yu, J.; Li, X.; Yin, J.; Chen, M. Synthesis and high formaldehyde sensing properties of quasi two-dimensional mesoporous ZnSnO3 nanomaterials. RSC Adv. 2019, 9, 14809–14816. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Ma, J.; Qiao, X.; Cui, Y.; Jia, L.; Wang, H. Hierarchical porous LaFeO3 nanostructure for efficient trace detection of formaldehyde. Sens. Actuators B 2020, 313, 128022. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, S.Y.; Zhang, J.L.; Wang, B.J.; Pei, S.T. Enhanced formaldehyde gas sensing performance based on Bi doped Zn2SnO4/SnO2 porous nanospheres. J. Alloys Compd. 2020, 828, 154408. [Google Scholar] [CrossRef]
- Chen, H.; Li, C.; Zhang, X.; Yang, W. ZnO nanoplates with abundant porosity for significant formaldehyde-sensing. Mater. Lett. 2020, 260, 126982. [Google Scholar] [CrossRef]
- Liu, D.; Wan, J.; Wang, H.; Pang, G.; Tang, Z. Mesoporous Au@ZnO flower-like nanostructure for enhanced formaldehyde sensing performance. Inorg. Chem. Commun. 2019, 102, 203–209. [Google Scholar] [CrossRef]
- Zhang, B.; Li, Y.; Luo, N.; Xu, X.; Sun, G.; Wang, Y.; Cao, J. TiO2/ZnCo2O4 porous nanorods: Synthesis and temperature-dependent dual selectivity for sensing HCHO and TEA. Sens. Actuators B 2020, 321, 128461. [Google Scholar] [CrossRef]
- Shu, S.; Wang, M.; Yang, W.; Liu, S. Synthesis of surface layered hierarchical octahedral-like structured Zn2SnO4/SnO2 with excellent sensing properties toward HCHO. Sens. Actuators B 2017, 243, 1171–1180. [Google Scholar] [CrossRef]
- Huang, S.; Cheng, B.; Yu, J.; Jiang, C. Hierarchical Pt/MnO2–Ni(OH)2 Hybrid Nanoflakes with Enhanced Room-Temperature Formaldehyde Oxidation Activity. ACS Sustain. Chem. Eng. 2018, 6, 12481–12488. [Google Scholar] [CrossRef]
- Wang, D.; Wan, K.; Zhang, M.; Li, H.; Wang, P.; Wang, X.; Yang, J. Constructing hierarchical SnO2 nanofiber/nanosheets for efficient formaldehyde detection. Sens. Actuators B 2019, 283, 714–723. [Google Scholar] [CrossRef]
- Wan, K.; Wang, D.; Wang, F.; Li, H.; Xu, J.; Wang, X.; Yang, J. Hierarchical In2O3@SnO2 Core-Shell Nanofiber for High Efficiency Formaldehyde Detection. ACS Appl. Mater. Interfaces 2019, 11, 45214–45225. [Google Scholar] [CrossRef]
- Yu, H.; Yang, T.; Wang, Z.; Li, Z.; Xiao, B.; Zhao, Q.; Zhang, M. Facile synthesis cedar-like SnO2 hierarchical micro-nanostructures with improved formaldehyde gas sensing characteristics. J. Alloys Compd. 2017, 724, 121–129. [Google Scholar] [CrossRef]
- Tao, Z.; Li, Y.; Zhang, B.; Sun, G.; Xiao, M.; Bala, H.; Cao, J.; Zhang, Z.; Wang, Y. Synthesis of urchin-like In2O3 hollow spheres for selective and quantitative detection of formaldehyde. Sens. Actuators B 2019, 298, 126889. [Google Scholar] [CrossRef]
- Li, C.; Liu, Y.; Wan, W.; Li, Y.; Ma, Y.; Zhang, J.; Ren, X.; Zhao, H. Hydrothermal synthesis of novel porous butterfly-like hierarchical SnO2 architecture with excellent gas-sensing performance to acetaldehyde. Sens. Actuators B 2020, 318, 128209. [Google Scholar] [CrossRef]
- Wang, B.J.; Ma, S.Y.; Pei, S.T.; Xu, X.L.; Cao, P.F.; Zhang, J.L.; Zhang, R.; Xu, X.H.; Han, T. High specific surface area SnO2 prepared by calcining Sn-MOFs and their formaldehyde-sensing characteristics. Sens. Actuators B 2020, 321, 128560. [Google Scholar] [CrossRef]
- Xu, Y.; Tian, X.; Fan, Y.; Sun, Y. A formaldehyde gas sensor with improved gas response and sub-ppm level detection limit based on NiO/NiFe2O4 composite nanotetrahedrons. Sens. Actuators B 2020, 309, 127719. [Google Scholar] [CrossRef]
- Bo, Z.; Yuan, M.; Mao, S.; Chen, X.; Yan, J.; Cen, K. Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing. Sens. Actuators B 2018, 256, 1011–1020. [Google Scholar] [CrossRef]
- Wang, J.; Zhan, D.; Wang, K.; Hang, W. The detection of formaldehyde using microelectromechanical acoustic resonator with multiwalled carbon nanotubes-polyethyleneimine composite coating. J. Micromech. Microeng. 2017, 28, 015003. [Google Scholar] [CrossRef]
- Nasriddinov, A.; Rumyantseva, M.; Marikutsa, A.; Gaskov, A.; Lee, J.-H.; Kim, J.-H.; Kim, J.-Y.; Kim, S.S.; Kim, H.W. Sub-ppm Formaldehyde Detection by n-n TiO2@SnO2 Nanocomposites. Sensors 2019, 19, 3182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Wang, X.; Yi, G.; Li, H.; Shi, C.; Sun, G.; Zhang, Z. Hydrothermal Synthesis of Co3O4/ZnO Hybrid Nanoparticles for Triethylamine Detection. Nanomaterials 2019, 9, 1599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, M.; Yang, T.; Zhai, C.; Du, L.; Zhang, J.; Zhang, M. Fast triethylamine gas sensing response properties of Ho-doped SnO2 nanoparticles. J. Alloys Compd. 2020, 817, 152724. [Google Scholar] [CrossRef]
- Liu, H.; Cao, X.; Wu, H.; Li, B.; Li, Y.; Zhu, W.; Yang, Z.; Huang, Y. Innovative development on a p-type delafossite CuCrO2 nanoparticles based triethylamine sensor. Sens. Actuators B 2020, 324, 128743. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, T.; Zhao, Y.; Zheng, L.; Liu, X.; Zhang, J. Multi-metal functionalized tungsten oxide nanowires enabling ultra-sensitive detection of triethylamine. Sens. Actuators B 2019, 300, 127042. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Wang, Y.; Yu, K.; Tang, X.; Zhang, Y.; Wang, S.; Wei, C. Construction of 1D SnO2-coated ZnO nanowire heterojunction for their improved n-butylamine sensing performances. Sci. Rep. 2016, 6, 35079. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Luo, Y.; Zhuo, M.; Yang, T.; Liang, J.; Zhang, M.; Ma, J.; Duan, H.; Li, Q. Diethylamine gas sensor using V2O5-decorated α-Fe2O3 nanorods as a sensing material. RSC Adv. 2016, 6, 6511–6515. [Google Scholar] [CrossRef]
- Liu, L.; Song, P.; Yang, Z.; Wang, Q. Highly sensitive and selective trimethylamine sensors based on WO3 nanorods decorated with Au nanoparticles. Phys. E Low-Dimens. Syst. Nanostruct. 2017, 90, 109–115. [Google Scholar] [CrossRef]
- He, K.; He, S.; Yang, W.; Tian, Q. Ag nanoparticles-decorated α-MoO3 nanorods for remarkable and rapid triethylamine-sensing response boosted by pulse-heating technique. J. Alloys Compd. 2019, 808, 151704. [Google Scholar] [CrossRef]
- Li, W.; He, S.; Feng, L.; Yang, W. Cr-doped α-MoO3 nanorods for the fast detection of triethylamine using a pulse-heating strategy. Mater. Lett. 2019, 250, 143–146. [Google Scholar] [CrossRef]
- He, S.; Li, W.; Feng, L.; Yang, W. Rational interaction between the aimed gas and oxide surfaces enabling high-performance sensor: The case of acidic α-MoO3 nanorods for selective detection of triethylamine. J. Alloys Compd. 2019, 783, 574–582. [Google Scholar] [CrossRef]
- Yang, C.; Xu, Y.; Zheng, L.; Zhao, Y.; Zheng, W.; Liu, X.; Zhang, J. Hierarchical NiCo2O4 microspheres assembled by nanorods with p-type response for detection of triethylamine. Chin. Chem. Lett. 2020, 31, 2077–2082. [Google Scholar] [CrossRef]
- Xu, H.; Li, W.; Han, R.; Zhai, T.; Yu, H.; Chen, Z.; Wu, X.; Wang, J.; Cao, B. Enhanced triethylamine sensing properties by fabricating Au@SnO2/α-Fe2O3 core-shell nanoneedles directly on alumina tubes. Sens. Actuators B 2018, 262, 70–78. [Google Scholar] [CrossRef]
- Guo, L.; Wang, C.; Kou, X.; Xie, N.; Liu, F.; Zhang, H.; Liang, X.; Gao, Y.; Sun, Y.; Chuai, X.; et al. Detection of triethylamine with fast response by Al2O3/α-Fe2O3 composite nanofibers. Sens. Actuators B 2018, 266, 139–148. [Google Scholar] [CrossRef]
- Ma, Q.; Li, H.; Chu, S.; Liu, Y.; Liu, M.; Fu, X.; Li, H.; Guo, J. In2O3 Hierarchical Structures of One-Dimensional Electrospun Fibers with in Situ Growth of Octahedron-like Particles with Superior Sensitivity for Triethylamine at Near Room Temperature. ACS Sustain. Chem. Eng. 2020, 8, 5240–5250. [Google Scholar] [CrossRef]
- Perillo, P.M.; Rodríguez, D.F. Low temperature trimethylamine flexible gas sensor based on TiO2 membrane nanotubes. J. Alloys Compd. 2016, 657, 765–769. [Google Scholar] [CrossRef]
- Paoletti, C.; He, M.; Salvo, P.; Melai, B.; Calisi, N.; Mannini, M.; Cortigiani, B.; Bellagambi, F.G.; Swager, T.M.; Di Francesco, F.; et al. Room temperature amine sensors enabled by sidewall functionalization of single-walled carbon nanotubes. RSC Adv. 2018, 8, 5578–5585. [Google Scholar] [CrossRef]
- Galstyan, V.; Ponzoni, A.; Kholmanov, I.; Natile, M.M.; Comini, E.; Sberveglieri, G. Highly sensitive and selective detection of dimethylamine through Nb-doping of TiO2 nanotubes for potential use in seafood quality control. Sens. Actuators B 2020, 303, 127217. [Google Scholar] [CrossRef]
- Zhang, J.; Song, P.; Li, Z.; Zhang, S.; Yang, Z.; Wang, Q. Enhanced trimethylamine sensing performance of single-crystal MoO3 nanobelts decorated with Au nanoparticles. J. Alloys Compd. 2016, 685, 1024–1033. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Zhao, Z.; Liu, X.; Song, P. Facile synthesis and enhanced trimethylamine sensing performances of W-doped MoO3 nanobelts. Mater. Sci. Semicond. Proc. 2017, 66, 33–38. [Google Scholar] [CrossRef]
- Wei, Q.; Song, P.; Li, Z.; Yang, Z.; Wang, Q. Enhanced triethylamine sensing performance of MoO3 nanobelts by RuO2 nanoparticles decoration. Vacuum 2019, 162, 85–91. [Google Scholar] [CrossRef]
- Yang, T.; Gu, K.; Zhu, M.; Lu, Q.; Zhai, C.; Zhao, Q.; Yang, X.; Zhang, M. ZnO-SnO2 heterojunction nanobelts: Synthesis and ultraviolet light irradiation to improve the triethylamine sensing properties. Sens. Actuators B 2019, 279, 410–417. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, S.; Fu, H.; Wang, Y.; Yu, K.; Wang, L. Facile Design and Hydrothermal Synthesis of In2O3 Nanocube Polycrystals with Superior Triethylamine Sensing Properties. ACS Omega 2020, 5, 11466–11472. [Google Scholar] [CrossRef]
- Chen, G.; Chu, X.; Qiao, H.; Ye, M.; Chen, J.; Gao, C.; Guo, C.-Y. Thickness controllable single-crystal WO3 nanosheets: Highly selective sensor for triethylamine detection at room temperature. Mater. Lett. 2018, 226, 59–62. [Google Scholar] [CrossRef]
- Zhai, T.; Xu, H.; Li, W.; Yu, H.; Chen, Z.; Wang, J.; Cao, B. Low-temperature in-situ growth of SnO2 nanosheets and its high triethylamine sensing response by constructing Au-loaded ZnO/SnO2 heterostructure. J. Alloys Compd. 2018, 737, 603–612. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Li, Z.; Zhang, S.; Deng, X.; Zhao, G.; Xu, X. Highly sensitive and low working temperature detection of trace triethylamine based on TiO2 nanoparticles decorated CuO nanosheets sensors. Sens. Actuators B 2019, 301, 127019. [Google Scholar] [CrossRef]
- Bi, W.; Wang, W.; Liu, S. Synthesis of Rh–SnO2 nanosheets and ultra-high triethylamine sensing performance. J. Alloys Compd. 2020, 817, 152730. [Google Scholar] [CrossRef]
- Yan, Y.; Liu, J.; Liu, Q.; Yu, J.; Chen, R.; Zhang, H.; Song, D.; Yang, P.; Zhang, M.; Wang, J. Ag-modified hexagonal nanoflakes-textured hollow octahedron Zn2SnO4 with enhanced sensing properties for triethylamine. J. Alloys Compd. 2020, 823, 153724. [Google Scholar] [CrossRef]
- Yang, J.; Wang, S.; Zhang, L.; Dong, R.; Zhu, Z.; Gao, X. Zn2SnO4-doped SnO2 hollow spheres for phenylamine gas sensor application. Sens. Actuators B 2017, 239, 857–864. [Google Scholar] [CrossRef]
- Xue, D.; Wang, Y.; Cao, J.; Zhang, Z. Hydrothermal Synthesis of CeO2-SnO2 Nanoflowers for Improving Triethylamine Gas Sensing Property. Nanomaterials 2018, 8, 1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomer, V.K.; Devi, S.; Malik, R.; Nehra, S.P.; Duhan, S. Highly sensitive and selective volatile organic amine (VOA) sensors using mesoporous WO3–SnO2 nanohybrids. Sens. Actuators B 2016, 229, 321–330. [Google Scholar] [CrossRef]
- Wu, Y.-P.; Zhou, W.; Dong, W.-W.; Zhao, J.; Qiao, X.-Q.; Hou, D.-F.; Li, D.-S.; Zhang, Q.; Feng, P. Temperature-Controlled Synthesis of Porous CuO Particles with Different Morphologies for Highly Sensitive Detection of Triethylamine. Cryst. Growth Des. 2017, 17, 2158–2165. [Google Scholar] [CrossRef]
- Zhang, S.; Song, P.; Tian, Z.; Wang, Q. Synthesis of mesoporous In2O3 nanocubes and their superior trimethylamine sensing properties. Mater. Sci. Semicond. Proc. 2018, 75, 58–64. [Google Scholar] [CrossRef]
- Zito, C.A.; Perfecto, T.M.; Volanti, D.P. Porous CeO2 nanospheres for a room temperature triethylamine sensor under high humidity conditions. New J. Chem. 2018, 42, 15954–15961. [Google Scholar] [CrossRef]
- Song, X.; Xu, Q.; Zhang, T.; Song, B.; Li, C.; Cao, B. Room-temperature, high selectivity and low-ppm-level triethylamine sensor assembled with Au decahedrons-decorated porous α-Fe2O3 nanorods directly grown on flat substrate. Sens. Actuators B 2018, 268, 170–181. [Google Scholar] [CrossRef]
- Luo, N.; Sun, G.; Zhang, B.; Li, Y.; Jin, H.; Lin, L.; Bala, H.; Cao, J.; Zhang, Z.; Wang, Y. Improved TEA sensing performance of ZnCo2O4 by structure evolution from porous nanorod to single-layer nanochain. Sens. Actuators B 2018, 277, 544–554. [Google Scholar] [CrossRef]
- Zhao, Y.; Yuan, X.; Sun, Y.; Wang, Q.; Xia, X.-Y.; Tang, B. Facile synthesis of tortoise shell-like porous NiCo2O4 nanoplate with promising triethylamine gas sensing properties. Sens. Actuators B 2020, 323, 128663. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, L.; Yang, C.; Zheng, W.; Liu, X.; Zhang, J. Oxygen Vacancies Enabled Porous SnO2 Thin Films for Highly Sensitive Detection of Triethylamine at Room Temperature. ACS Appl. Mater. Interfaces 2020, 12, 20704–20713. [Google Scholar] [CrossRef]
- Wei, Q.; Sun, J.; Song, P.; Li, J.; Yang, Z.; Wang, Q. Spindle-like Fe2O3/ZnFe2O4 porous nanocomposites derived from metal-organic frameworks with excellent sensing performance towards triethylamine. Sens. Actuators B 2020, 317, 128205. [Google Scholar] [CrossRef]
- Meng, F.; Zheng, H.; Sun, Y.; Li, M.; Liu, J. Trimethylamine Sensors Based on Au-Modified Hierarchical Porous Single-Crystalline ZnO Nanosheets. Sensors 2017, 17, 1478. [Google Scholar] [CrossRef]
- Yang, T.; Du, L.; Zhai, C.; Li, Z.; Zhao, Q.; Luo, Y.; Xing, D.; Zhang, M. Ultrafast response and recovery trimethylamine sensor based on α-Fe2O3 snowflake-like hierarchical architectures. J. Alloys Compd. 2017, 718, 396–404. [Google Scholar] [CrossRef]
- Liu, F.; Chen, X.; Wang, X.; Han, Y.; Song, X.; Tian, J.; He, X.; Cui, H. Fabrication of 1D Zn2SnO4 nanowire and 2D ZnO nanosheet hybrid hierarchical structures for use in triethylamine gas sensors. Sens. Actuators B 2019, 291, 155–163. [Google Scholar] [CrossRef]
- Hou, X.; Wang, Z.; Fan, G.; Ji, H.; Yi, S.; Li, T.; Wang, Y.; Zhang, Z.; Yuan, L.; Zhang, R.; et al. Hierarchical three-dimensional MoS2/GO hybrid nanostructures for triethylamine-sensing applications with high sensitivity and selectivity. Sens. Actuators B 2020, 317, 128236. [Google Scholar] [CrossRef]
- Jin, H.; Sun, G.; Zhang, B.; Luo, N.; Li, Y.; Lin, L.; Bala, H.; Cao, J.; Zhang, Z.; Wang, Y. Facile synthesis of Co3O4 nanochains and their improved TEA sensing performance by decorating with Au nanoparticles. J. Alloys Compd. 2019, 776, 782–790. [Google Scholar] [CrossRef]
- Han, Y.; Liu, Y.; Su, C.; Chen, X.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; Wei, H.; Yang, Z. Sonochemical synthesis of hierarchical WO3 flower-like spheres for highly efficient triethylamine detection. Sens. Actuators B 2020, 306, 127536. [Google Scholar] [CrossRef]
- Ma, Q.; Fang, Y.; Liu, Y.; Song, J.; Fu, X.; Li, H.; Chu, S.; Chen, Y. Facile synthesis of ZnO morphological evolution with tunable growth habits: Achieving superior gas-sensing properties of hemispherical ZnO/Au heterostructures for triethylamine. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 106, 180–186. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, Y.; Song, P.; Yang, Z.; Wang, Q. ppb level triethylamine detection of yolk-shell SnO2/Au/Fe2O3 nanoboxes at low-temperature. Appl. Surf. Sci. 2019, 476, 391–401. [Google Scholar] [CrossRef]
- Tao, Z.; Li, Y.; Sun, G.; Xiao, M. Enhanced TEA sensing properties of nest-like ZnO by decoration with Au. Mater. Res. Exp. 2019, 6, 105910. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Wang, C.-N.; Gong, F.-L.; Wang, P.; Guharoy, U.; Yang, C.; Zhang, H.-L.; Fang, S.-M.; Liu, J. Ultrathin agaric-like ZnO with Pd dopant for aniline sensor and DFT investigation. J. Hazard. Mater. 2020, 388, 122069. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Yang, Y.; Xu, K.; Yu, T.; Peng, Q.; Yao, S.; Yuan, C. Controllable preparation of faceted Co3O4 nanocrystals@MnO2 nanowires shish-kebab structures with enhanced triethylamine sensing performance. Sens. Actuators B 2020, 304, 127358. [Google Scholar] [CrossRef]
- Peng, R.; Li, Y.; Chen, J.; Si, P.; Feng, J.; Zhang, L.; Ci, L. Reduced graphene oxide wrapped Au@ZnO core-shell structure for highly selective triethylamine gas sensing application at a low temperature. Sens. Actuators A 2018, 283, 128–133. [Google Scholar] [CrossRef]
- Liu, S.-R.; Guan, M.-Y.; Li, X.-Z.; Guo, Y. Light irradiation enhanced triethylamine gas sensing materials based on ZnO/ZnFe2O4 composites. Sens. Actuators B 2016, 236, 350–357. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, T.; Zheng, L.; Sun, L.; Liu, X.; Zhao, Y.; Zhang, J. Rational design of Au/Co3O4-functionalized W18O49 hollow heterostructures with high sensitivity and ultralow limit for triethylamine detection. Sens. Actuators B 2019, 284, 202–212. [Google Scholar] [CrossRef]
- Liu, C.; Xu, H.; Chen, Z.; Ye, Q.; Wu, X.; Wang, J.; Cao, B. Enhanced Triethylamine Sensing Properties by Designing an α-Fe2O3/α-MoO3 Nanostructure Directly Grown on Ceramic Tubes. ACS Appl. Nano Mater. 2019, 2, 6715–6725. [Google Scholar] [CrossRef]
- Li, H.; Zhang, N.; Zhao, X.; Xu, Z.; Zhang, Z.; Wang, Y. Modulation of TEA and methanol gas sensing by ion-exchange based on a sacrificial template 3D diamond-shaped MOF. Sens. Actuators B 2020, 315, 128136. [Google Scholar] [CrossRef]
- Sun, L.; Sun, J.; Han, N.; Liao, D.; Bai, S.; Yang, X.; Luo, R.; Li, D.; Chen, A. rGO decorated W doped BiVO4 novel material for sensing detection of trimethylamine. Sens. Actuators B 2019, 298, 126749. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, H.; Liu, C.; Cao, D.; Ye, Q.; Wu, X.; Wang, J.; Cao, B. Good triethylamine sensing properties of Au@MoS2 nanostructures directly grown on ceramic tubes. Mater. Chem. Phys. 2020, 245, 122683. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Y.; Lv, T.; Li, K.; Zhu, Z.; Zhang, J.; Zhang, R.; Liu, Q. Ag-LaFeO3 nanoparticles using molecular imprinting technique for selective detection of xylene. Mater. Res. Bull. 2018, 107, 271–279. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Y.; Zhang, J.; Li, K.; Lv, T.; Shen, K.; Zhu, Z.; Liu, Q. Facile lotus-leaf-templated synthesis and enhanced xylene gas sensing properties of Ag-LaFeO3 nanoparticles. J. Mater. Chem. C 2018, 6, 6138–6145. [Google Scholar] [CrossRef]
- Suematsu, K.; Watanabe, K.; Tou, A.; Sun, Y.; Shimanoe, K. Ultraselective Toluene-Gas Sensor: Nanosized Gold Loaded on Zinc Oxide Nanoparticles. Anal. Chem. 2018, 90, 1959–1966. [Google Scholar] [CrossRef]
- Kang, Y.; Kim, K.; Cho, B.; Kwak, Y.; Kim, J. Highly Sensitive Detection of Benzene, Toluene, and Xylene Based on CoPP-Functionalized TiO2 Nanoparticles with Low Power Consumption. ACS Sens. 2020, 5, 754–763. [Google Scholar] [CrossRef] [PubMed]
- Park, M.S.; Lee, J.H.; Park, Y.; Yoo, R.; Park, S.; Jung, H.; Kim, W.; Lee, H.-S.; Lee, W. Doping effects of ZnO quantum dots on the sensitive and selective detection of acetylene for dissolved-gas analysis applications of transformer oil. Sens. Actuators B 2019, 299, 126992. [Google Scholar] [CrossRef]
- Xu, T.; Xu, P.; Zheng, D.; Yu, H.; Li, X. Metal–Organic Frameworks for Resonant-Gravimetric Detection of Trace-Level Xylene Molecules. Anal. Chem. 2016, 88, 12234–12240. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Huang, Z.; Yu, Z.; Wang, B.; Wang, H.; Sun, P.; Suo, H.; Gao, Y.; Sun, Y.; Li, T.; et al. Low operating temperature toluene sensor based on novel α-Fe2O3/SnO2 heterostructure nanowire arrays. RSC Adv. 2016, 6, 52604–52610. [Google Scholar] [CrossRef]
- Bang, J.H.; Choi, M.S.; Mirzaei, A.; Han, S.; Lee, H.Y.; Choi, S.-W.; Kim, S.S.; Kim, H.W. Hybridization of silicon nanowires with TeO2 branch structures and Pt nanoparticles for highly sensitive and selective toluene sensing. Appl. Surf. Sci. 2020, 525, 146620. [Google Scholar] [CrossRef]
- Dhawale, D.S.; Gujar, T.P.; Lokhande, C.D. TiO2 Nanorods Decorated with Pd Nanoparticles for Enhanced Liquefied Petroleum Gas Sensing Performance. Anal. Chem. 2017, 89, 8531–8537. [Google Scholar] [CrossRef]
- Lee, K.; Baek, D.-H.; Choi, J.; Kim, J. Suspended CoPP-ZnO nanorods integrated with micro-heaters for highly sensitive VOC detection. Sens. Actuators B 2018, 264, 249–254. [Google Scholar] [CrossRef]
- Qin, H.; Cao, Y.; Xie, J.; Xu, H.; Jia, D. Solid-state chemical synthesis and xylene-sensing properties of α-MoO3 arrays assembled by nanoplates. Sens. Actuators B 2017, 242, 769–776. [Google Scholar] [CrossRef]
- Qin, H.; Xie, J.; Xu, H.; Li, Y.; Cao, Y. Green solid-state chemical synthesis and excellent xylene-detecting behaviors of Y-doped α-MoO3 nanoarrays. Mater. Res. Bull. 2017, 93, 256–263. [Google Scholar] [CrossRef]
- Koo, W.-T.; Choi, S.-J.; Kim, S.-J.; Jang, J.-S.; Tuller, H.L.; Kim, I.-D. Heterogeneous Sensitization of Metal–Organic Framework Driven Metal@Metal Oxide Complex Catalysts on an Oxide Nanofiber Scaffold Toward Superior Gas Sensors. J. Am. Chem. Soc. 2016, 138, 13431–13437. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, Y.; Mani, G.K.; Ponnusamy, D.; Shankar, P.; Kulandaisamy, A.J.; Tsuchiya, K.; Rayappan, J.B.B.; Ramana Reddy, M.V. V2O5 nanofibers: Potential contestant for high performance xylene sensor. J. Alloys Compd. 2018, 731, 805–812. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, Z.; Yang, Y.; Xing, X.; Zou, T.; Wang, Z.; Hong, P.; Peng, S.; Wang, Y. Pd-Functionalized SnO2 Nanofibers Prepared by Shaddock Peels as Bio-Templates for High Gas Sensing Performance toward Butane. Nanomaterials 2019, 9, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, Y.J.; Na, H.G.; Kang, S.Y.; Choi, S.-W.; Kim, S.S.; Kim, H.W. Selective detection of low concentration toluene gas using Pt-decorated carbon nanotubes sensors. Sens. Actuators B 2016, 227, 157–168. [Google Scholar] [CrossRef]
- Seekaew, Y.; Wisitsoraat, A.; Phokharatkul, D.; Wongchoosuk, C. Room temperature toluene gas sensor based on TiO2 nanoparticles decorated 3D graphene-carbon nanotube nanostructures. Sens. Actuators B 2019, 279, 69–78. [Google Scholar] [CrossRef]
- Du, L.; Song, X.; Liang, X.; Liu, Y.; Zhang, M. Formation of NiCo2O4 hierarchical tubular nanostructures for enhanced xylene sensing properties. Appl. Surf. Sci. 2020, 526, 146706. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, N.; Sun, L.; Chen, C.; Chen, Y.; Li, C.; Ruan, S. One-step synthesis and the enhanced xylene-sensing properties of Fe-doped MoO3 nanobelts. RSC Adv. 2016, 6, 106364–106369. [Google Scholar] [CrossRef]
- Wang, B.; Jin, H.T.; Zheng, Z.Q.; Zhou, Y.H.; Gao, C. Low-temperature and highly sensitive C2H2 sensor based on Au decorated ZnO/In2O3 belt-tooth shape nano-heterostructures. Sens. Actuators B 2017, 244, 344–356. [Google Scholar] [CrossRef]
- Qu, F.; Jiang, H.; Yang, M. Designed formation through a metal organic framework route of ZnO/ZnCo2O4 hollow core–shell nanocages with enhanced gas sensing properties. Nanoscale 2016, 8, 16349–16356. [Google Scholar] [CrossRef]
- Li, F.; Li, C.; Zhu, L.; Guo, W.; Shen, L.; Wen, S.; Ruan, S. Enhanced toluene sensing performance of gold-functionalized WO3·H2O nanosheets. Sens. Actuators B 2016, 223, 761–767. [Google Scholar] [CrossRef]
- Gautam, C.; Tiwary, C.S.; Machado, L.D.; Jose, S.; Ozden, S.; Biradar, S.; Galvao, D.S.; Sonker, R.K.; Yadav, B.C.; Vajtai, R.; et al. Synthesis and porous h-BN 3D architectures for effective humidity and gas sensors. RSC Adv. 2016, 6, 87888–87896. [Google Scholar] [CrossRef] [Green Version]
- Qiu, L.; Zhang, S.; Huang, J.; Wang, C.; Zhao, R.; Qu, F.; Wang, P.; Yang, M. Highly selective and sensitive xylene sensors based on Nb-doped NiO nanosheets. Sens. Actuators B 2020, 308, 127520. [Google Scholar] [CrossRef]
- Xia, W.; Liu, Y.; Li, J.; Chen, C. Investigation of CdO hexagonal nanoflakes synthesized by a hydrothermal method for liquefied petroleum gas detection. Anal. Methods 2016, 8, 6265–6269. [Google Scholar] [CrossRef]
- Wang, D.; Yin, Y.; Xu, P.; Wang, F.; Wang, P.; Xu, J.; Wang, X.; Li, X. The catalytic-induced sensing effect of triangular CeO2 nanoflakes for enhanced BTEX vapor detection with conventional ZnO gas sensors. J. Mater. Chem. A 2020, 8, 11188–11194. [Google Scholar] [CrossRef]
- Dong, C.; Liu, X.; Xiao, X.; Du, S.; Wang, Y. Monodisperse ZnFe2O4 nanospheres synthesized by a nonaqueous route for a highly slective low-ppm-level toluene gas sensor. Sens. Actuators B 2017, 239, 1231–1236. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, B.-Y.; Yoon, J.-W.; Lee, J.-H. Extremely selective detection of ppb levels of indoor xylene using CoCr2O4 hollow spheres activated by Pt doping. Chem. Commun. 2019, 55, 751–754. [Google Scholar] [CrossRef]
- Yao, L.; Li, Y.; Ran, Y.; Yang, Y.; Zhao, R.; Su, L.; Kong, Y.; Ma, D.; Chen, Y.; Wang, Y. Construction of novel Pd–SnO2 composite nanoporous structure as a high-response sensor for methane gas. J. Alloys Compd. 2020, 826, 154063. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, P.; Liu, T.; Feng, Y.; Blackman, C.; Li, D. Facile synthesis of mesoporous hierarchical Co3O4–TiO2 p–n heterojunctions with greatly enhanced gas sensing performance. J. Mater. Chem. A 2017, 5, 10387–10397. [Google Scholar] [CrossRef]
- Sui, L.; Zhang, X.; Cheng, X.; Wang, P.; Xu, Y.; Gao, S.; Zhao, H.; Huo, L. Au-Loaded Hierarchical MoO3 Hollow Spheres with Enhanced Gas-Sensing Performance for the Detection of BTX (Benzene, Toluene, And Xylene) And the Sensing Mechanism. ACS Appl. Mater. Interfaces 2017, 9, 1661–1670. [Google Scholar] [CrossRef]
- Yang, L.; Zhou, X.; Song, L.; Wang, Y.; Wu, X.; Han, N.; Chen, Y. Noble Metal/Tin Dioxide Hierarchical Hollow Spheres for Low-Concentration Breath Methane Sensing. ACS Appl. Nano Mater. 2018, 1, 6327–6336. [Google Scholar] [CrossRef]
- Kim, B.-Y.; Ahn, J.H.; Yoon, J.-W.; Lee, C.-S.; Kang, Y.C.; Abdel-Hady, F.; Wazzan, A.A.; Lee, J.-H. Highly Selective Xylene Sensor Based on NiO/NiMoO4 Nanocomposite Hierarchical Spheres for Indoor Air Monitoring. ACS Appl. Mater. Interfaces 2016, 8, 34603–34611. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Gao, S.; Zhou, T.; Tu, J.; Zhang, T. Facile preparation of hierarchical structure based on p-type Co3O4 as toluene detecting sensor. Appl. Surf. Sci. 2020, 503, 144167. [Google Scholar] [CrossRef]
- Wei, Z.; Zhou, Q.; Lu, Z.; Xu, L.; Gui, Y.; Tang, C. Morphology controllable synthesis of hierarchical WO3 nanostructures and C2H2 sensing properties. Phys. E Low-Dimens. Syst. Nanostruct. 2019, 109, 253–260. [Google Scholar] [CrossRef]
- Sonawane, N.B.; Baviskar, P.K.; Ahire, R.R.; Sankapal, B.R. CdO necklace like nanobeads decorated with PbS nanoparticles: Room temperature LPG sensor. Mater. Chem. Phys. 2017, 191, 168–172. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, J.; Zhou, L.; Liu, D.; Liu, F.; Liang, X.; Gao, Y.; Liu, F.; Yan, X.; Lu, G. Preparation of silver-loaded titanium dioxide hedgehog-like architecture composed of hundreds of nanorods and its fast response to xylene. J. Colloid Interface Sci. 2019, 536, 215–223. [Google Scholar] [CrossRef]
- Lu, S.; Hu, X.; Zheng, H.; Qiu, J.; Tian, R.; Quan, W.; Min, X.; Ji, P.; Hu, Y.; Cheng, S.; et al. Highly Selective, ppb-Level Xylene Gas Detection by Sn2+-Doped NiO Flower-Like Microspheres Prepared by a One-Step Hydrothermal Method. Sensors 2019, 19, 2958. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Li, J.; Fu, Y.; Tian, Y.; Yang, Z. Sensitized mechanism of recovered S-SnO2 from tin sludge for CH4 detection by increasing oxygen vacancy density as an efficient strategy. Sens. Actuators B 2019, 298, 126838. [Google Scholar] [CrossRef]
- Bai, S.; Du, L.; Sun, J.; Luo, R.; Li, D.; Chen, A.; Liu, C.-C. Preparation of reduced graphene oxide/Co3O4 composites and sensing performance to toluene at low temperature. RSC Adv. 2016, 6, 60109–60116. [Google Scholar] [CrossRef]
- Chen, N.; Deng, D.; Li, Y.; Xing, X.; Liu, X.; Xiao, X.; Wang, Y. The xylene sensing performance of WO3 decorated anatase TiO2 nanoparticles as a sensing material for a gas sensor at a low operating temperature. RSC Adv. 2016, 6, 49692–49701. [Google Scholar] [CrossRef]
- Zhang, Y.; Rong, Q.; Zhao, J.; Zhang, J.; Zhu, Z.; Liu, Q. Boron-doped graphene quantum dot/Ag–LaFeO3 p–p heterojunctions for sensitive and selective benzene detection. J. Mater. Chem. A 2018, 6, 12647–12653. [Google Scholar] [CrossRef]
- Subin David, S.P.; Veeralakshmi, S.; Sandhya, J.; Nehru, S.; Kalaiselvam, S. Room temperature operatable high sensitive toluene gas sensor using chemiresistive Ag/Bi2O3 nanocomposite. Sens. Actuators B 2020, 320, 128410. [Google Scholar] [CrossRef]
- Sukee, A.; Alharbi, A.A.; Staerz, A.; Wisitsoraat, A.; Liewhiran, C.; Weimar, U.; Barsan, N. Effect of AgO loading on flame-made LaFeO3 p-type semiconductor nanoparticles to acetylene sensing. Sens. Actuators B 2020, 312, 127990. [Google Scholar] [CrossRef]
- Hermawan, A.; Zhang, B.; Taufik, A.; Asakura, Y.; Hasegawa, T.; Zhu, J.; Shi, P.; Yin, S. CuO Nanoparticles/Ti3C2Tx MXene Hybrid Nanocomposites for Detection of Toluene Gas. ACS Appl. Nano Mater. 2020, 3, 4755–4766. [Google Scholar] [CrossRef]
- Behi, S.; Bohli, N.; Casanova-Cháfer, J.; Llobet, E.; Abdelghani, A. Metal Oxide Nanoparticle-Decorated Few Layer Graphene Nanoflake Chemoresistors for the Detection of Aromatic Volatile Organic Compounds. Sensors 2020, 20, 3413. [Google Scholar] [CrossRef]
- Luo, S.-X.L.; Lin, C.-J.; Ku, K.H.; Yoshinaga, K.; Swager, T.M. Pentiptycene Polymer/Single-Walled Carbon Nanotube Complexes: Applications in Benzene, Toluene, and o-Xylene Detection. ACS Nano 2020, 14, 7297–7307. [Google Scholar] [CrossRef]
- Ma, L.; Ma, S.Y.; Qiang, Z.; Xu, X.L.; Chen, Q.; Yang, H.M.; Chen, H.; Ge, Q.; Zeng, Q.Z.; Wang, B.Q. Preparation of Co-doped LaFeO3 nanofibers with enhanced acetic acid sensing properties. Mater. Lett. 2017, 200, 47–50. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhao, Y.; Ma, J.; Cheng, X.; Xie, J.; Xu, P.; Liu, H.; Liu, H.; Zhang, H.; Wu, M.; et al. Mesoporous Tungsten Oxides with Crystalline Framework for Highly Sensitive and Selective Detection of Foodborne Pathogens. J. Am. Chem. Soc. 2017, 139, 10365–10373. [Google Scholar] [CrossRef]
- Abdul Hamid, H.; Lockman, Z.; Hattori, T.; Abdul Razak, K. Sensitive and selective chloroform sensor using Fe2O3 nanoparticle-decorated ZnO nanorods in an aqueous solution. J. Mater. Sci. Mater. Electron. 2019, 30, 18990–19000. [Google Scholar] [CrossRef]
- Yin, Y.; Zhang, N.; Han, J.; Liu, C.; Adimi, S.; Wen, S.; Li, X.; Ruan, S. Metal-organic framework derived core-shell PrFeO3-functionalized α-Fe2O3 nano-octahedrons as high performance ethyl acetate sensors. Sens. Actuators B 2019, 297, 126738. [Google Scholar] [CrossRef]
- Gao, R.; Cheng, X.; Gao, S.; Zhang, X.; Xu, Y.; Zhao, H.; Huo, L. Highly selective detection of saturated vapors of abused drugs by ZnO nanorod bundles gas sensor. Appl. Surf. Sci. 2019, 485, 266–273. [Google Scholar] [CrossRef]
- Kumar, T.H.V.; Raman Pillai, S.K.; Chan-Park, M.B.; Sundramoorthy, A.K. Highly selective detection of an organophosphorus pesticide, methyl parathion, using Ag–ZnO–SWCNT based field-effect transistors. J. Mater. Chem. C 2020, 8, 8864–8875. [Google Scholar] [CrossRef]
- Chen, Q.; Li, J.; Fu, W.; Yang, Y.; Zhu, W.; Zhang, J. Detection of N,N-dimethylformamide vapor down to ppb level using electrospun InYbO nanofibers field-effect transistor. Sens. Actuators B 2020, 323, 128676. [Google Scholar] [CrossRef]
- He, L.; Gao, C.; Yang, L.; Zhang, K.; Chu, X.; Liang, S.; Zeng, D. Facile synthesis of MgGa2O4/graphene composites for room temperature acetic acid gas sensing. Sens. Actuators B 2020, 306, 127453. [Google Scholar] [CrossRef]
Materials/Nanostructure | Analyte/Concentration | Gas Response (S = Rair/Rgas) | Response/Recovery | Temp. | LOD | Ref |
---|---|---|---|---|---|---|
TiO2/nanoparticles | Acetone/500 ppm | 9.19 | 10 s/9 s | 270 °C | 0.5 ppm | [59] |
α-Fe2O3/nanoparticles | Acetone/100 ppm | 8.8 | NA | 340 °C | 5 ppm | [60] |
Mn doped ZnO/nanoparticles | Acetone/2 ppm | 3.7 | 17 s/NA | 340 °C | 1.8 ppm | [61] |
Pt-decorated Al-doped ZnO/nanoparticles | Acetone/10 ppm | 421 | 2.9 s/440 s | 450 °C | ~0.1 ppm | [62] |
Al doped ZnO/nanoparticles | Acetone/10 ppm | 11.8 | 11 s/793 s | 500 °C | 0.01 ppm | [63] |
B-TiO2@Ag/nanoparticles | Acetone/50 ppm | 68.19 | 12 s/41 s | 250 °C | 0.887 ppm | [64] |
La1-xYxMnO3-⸹/nanoparticles | Acetone/500 ppm | 27.2 | NA | 300 °C | NA | [65] |
Bi1-xLaxFeO3/nanoparticles | Acetone/0.05 ppm | 8 | 15 s/13 s | 260 °C | 0.05 ppm | [66] |
SmFe1−xMgxO3/nanocrystals | Acetone/0.5 ppm | 7.16 | 32 s/8 s | 220 °C | 0.01 ppm | [67] |
WO3/nanocrystals | Acetone/0.25 ppm | 3.8 | 4 s/5 s | 320 °C | 0.0075 ppm | [68] |
TiO2-5Rh/nanocrystals | Acetone/50 ppm | 9.6 | NA | 300 °C | 10 ppm | [69] |
Co3O4 NPs attached SnO2/nanowires | Acetone/50 ppm | 70 | NA/122 s | 300 °C | 0.5 ppm | [70] |
self-assembled monolayer (SAM) functionalized ZnO/nanowires | Acetone/50 ppm | 170 & 90 | 2 min/24 min & 3 min/29 min | 300 °C | 0.5 ppm | [71] |
Branched p-CuxO @ n-ZnO/nanowires | Acetone/5–50 ppm | 3.39–6.38 | 62 s/90 s | 250 °C | ~5 ppm | [72] |
Cr doped ZnO single-crystal/nanorods | Acetone/70 ppm | 70 | NA | 300 °C | ~10 ppm | [73] |
SnS2/nanorods | Acetone/ 10 ppm | 25 | NA | 300 °C | Down to sub-ppm | [74] |
Au@ZnO & Pd@ZnO/nanorods | Acetone/100 ppm | 44.5 & 31.8 | 8 s/5 s & 17 s/11 s | 150 °C | 0.005 ppm | [75] |
α-Fe2O3-NiO/nanorods | Acetone/100 ppm | 290 | 28 s/40 s | 280 °C | ~5 ppm | [76] |
Ag-doped ZnO/nanoneedles | Acetone/200 ppm | 30.233 | 10 s/21 s | 370 °C | ~10 ppm | [77] |
La-doped SnO2/nanoarrays | Acetone/200 ppm | 69 | 6–12 s/20 s | 290 °C | 5 ppm | [78] |
α-Fe2O3-SnO2/nanoarrays | Acetone/1 ppm | 5.37 | 14 s/70 s | 340 °C | 1 ppm | [79] |
ZnTiO3/nanoarrays | Acetone/12.5 ppm | 78 & 94 | 117 and 141 s/99 and 131 s & 75 and 81 s/50 and 69 s (dark & light) | 45 °C & 350 °C | 0.01 & 0.09 ppm | [80] |
Ag-decorated SnO2/nanofibers | Acetone/50 ppm | 40 | 6 s/10 s | 160 °C | 5 ppm | [81] |
PrFeO3/nanofibers | Acetone/200 ppm | 141.3 | 7 s/6 s | 180 °C | 10 ppm | [82] |
Pt-ZnO-In2O3/nanofibers | Acetone/100 ppm | 57.1 | 1 s/44 s | 300 °C | 0.5 ppm | [83] |
Au@WO3-SnO2/nanofibers | Acetone/10 ppm | 196.1 | ~2 min (for both) | 150 °C | <0.5 ppm | [84] |
Au functionalized In-doped ZnSnO3/nanofibers | Acetone/50 ppm | 19.3 | 10 s/13 s | 200 °C | ~10 ppm | [85] |
ZnO/nanofibers | Acetone/100 ppm | 50–124 | 65–130 s/75–135 s | 250 °C | NA | [86] |
Ru-doped SnO2/nanofibers | Acetone/100 ppm | 118.8 | 1 s/86 s | 200 °C | ~0.5 ppm | [87] |
Pd-SnO2/nanotubes | Acetone/5 ppm | 93.55 | NA | 350 °C | <1 ppm | [88] |
PdO@ZnO-SnO2/nanotubes | Acetone/1 ppm | 5.06 | 20 s/64 s | 400 °C | 0.01 ppm | [89] |
α-Fe2O3 nanorods-MWCNTs/nanotubes | Acetone/100 ppm | 38.7 | 2 s/45 s | 225 °C | 0.5 ppm | [90] |
Pt-decorated CuFe2O4/nanotubes | Acetone/100 ppm | 16.5 | 16 s/299 s | 300 °C | ~5 ppm | [92] |
WO3–SnO2/nanotubes | Acetone/50 ppm | 63.8 | NA | 275 °C | 0.05 ppm | [93] |
ZnO-Decorated In/Ga Oxide/nanotubes | Acetone/100 ppm | 12.7 & 27.1 | 6.8 s/6.1 s & 11.8 s/11.6 s | 300 °C | 0.2 ppm | [94] |
Y doped SnO2/nanobelts | Acetone/100 ppm | 11.4 | 9–25 s/10–30 s | 210 °C | 0.9024 ppm | [95] |
Eu doped SnO2/nanobelts | Acetone/100 ppm | 8.56 | 15 s/19 s | 210 °C | 0.131 ppm | [96] |
Co3 O4/nanocubes | Acetone/500 ppm | 4.88 | 2 s/5 s | 240 °C | ~10 ppm | [97] |
Ag-ZnSnO3/nanocubes | Acetone/100 ppm | 30 | 2 s/3 s | 280 °C | 1 ppm | [99] |
ZnO−CuO/nanocubes | Acetone/1 ppm | 11.14 | NA | 200 °C | 0.009 ppm | [100] |
NiFe2O4/nanocubes | Acetone/1 ppm | 1.9 | 8 s/40 s | 160 °C | 0.52 ppm | [101] |
NiO/ZnO/nanocubes | Acetone/200 ppm | 58 | 24 s/133 s | 340 °C | ~10 ppm | [102] |
MOF derived-ZnO/ZnFe2O4/nanocubes | Acetone/5 ppm | 9.4 | 5.6 min/6 min | 250 °C | <0.5 ppm | [103] |
PdO@Co3O4/nanocages | Acetone/5 ppm | 2.51 | NA | 350 °C | 0.1 ppm | [104] |
ZnO/ZnFe2O4/nanocages | Acetone/100 ppm | 25.8 | 8 s/32 s | 290 °C | 1 ppm | [105] |
PdO-NiO/NiCo2O4/nanocages | Acetone/100 ppm | 6.7 | <20 s/<30 s | 210 °C | NA | [106] |
Ag@CuO- TiO2/nanocages | Acetone/100 ppm | 6.2 | 56 s/9 s | 200 °C | ~1 ppm | [107] |
Co3O4/ nanosheets | Acetone/100 ppm | 16.5 | NA | 111 °C | ~5 ppm | [108] |
ZnO/nanosheets | Acetone/5 ppm | 6.7 | <60 s (for both) | 300 °C | <5 ppm | [109] |
SnO2/Fe2O3/nanosheets | Acetone/10 ppm | 9.8 | 0.8 s/3.4 s | 260 °C | NA | [110] |
NiO/nanosheets | Acetone/150 ppm | >90 | 80 s/82 s | 200 °C | 0.83 ppm | [111] |
Fluorine doped TiO2/nanosheets | Acetone/800 ppm | 17.42 | 162 s/220.5 s | 25 °C | ~25 ppm | [112] |
Nb-doped ZnO & ZnO/nanowalls | Acetone/100 ppm | 84.62 & 89.13 | NA | 200 °C & 200 °C | <20 ppm | [113] |
CuO/nanowalls | Acetone/500 ppm | 4 | 82 s (50 ppm)/NA | 320 °C | 2 ppm | [114] |
NiO/nanowalls | Acetone/10 ppm | >30 | NA | 250 °C | 0.2 ppm | [115] |
α-MoO3/nanoflakes | Acetone/10–100 ppm | NA | NA | 150 °C | NA | [117] |
SnS/nanoflakes | Acetone/100 ppm | >1000 | 3 s/14 s | 100 °C | <5 ppm | [118] |
NiO/ZnO/nanospheres | Acetone/100 ppm | 29.8 | 1 s/20 s | 275 °C | Down to sub-ppm | [122] |
WO3-SnO2/nanospheres | Acetone/50 ppm | ~8 & 16 | 16 s/12 s & 15 s/11 s | 240 °C | ~50 ppm | [123] |
Na:ZnO/nanoflowers | Acetone/100 ppm | 3.35 | 18.2 s/63 s | NA | 0.2 ppm | [124] |
ZnO/nanoflowers | Acetone/100 ppm | 2900 & 300 | 5 s/NA | 365 °C & 248 °C | <20 ppm | [126] |
RuO2-modified ZnO/nanoflowers | Acetone/100 ppm | 125.9 | 1 s/52 s | 172 °C | <25 ppm | [127] |
Au NPs-Fe2O3/porous nanoparticles | Acetone/10 ppm | 6.1 | 5 s/20 s | 200 °C | 0.132 ppm | [128] |
Au/ZnO/porous nanoparticles | Acetone/1 ppm | 17.1 | 231 s/215 s | 275 °C | <0.1 ppm | [129] |
ZnFe2O4/porous nanorods | Acetone/100 ppm | 52.8 | 1 s/11 s | 260 °C | <10 ppm | [130] |
α-Fe2O3/SnO2/porous nanorods | Acetone/100 ppm | 53.1 | 9 s/2.5 s | 260 °C | <10 ppm | [131] |
W18O49/Pt/porous nanospheres | Acetone/20 ppm | 85 | 13 s/11 s (50 ppm) | 180 °C | 0.052 ppm | [132] |
Pt-doped-3D-SnO2/porous hierarchical structure | Acetone/100 ppm | 505.7 | 130 s/140 s | 153 °C | <0.05 ppm | [134] |
Ni doped ZnO/porous hierarchical structure | Acetone/100 ppm | 68 | 6 s/2 s | 340 °C | 0.116 ppm | [135] |
CuFe2O4/ α-Fe2O3/porous composite shell | Acetone/100 ppm | 14 | NA | 275 °C | 0.1 ppm | [136] |
3D- WO3/Au/porous nano- composite | Acetone/1.5 ppm | 7.6 | 7 s/8 s | 410 °C | 0.1 ppm | [137] |
ZnO nanowires-loaded Sb-doped SnO2-ZnO/hierarchical structure | Acetone/5 ppm | 12.1 & 27.8 | <16 s & 32 s (res)/NA (rec) | 400 °C | 4.3 & 8.1 ppm | [138] |
ZnO/3D-flower-like hierarchical structure | Acetone/100 ppm | 18.6 | 7 s/NA | 300 °C | NA | [139] |
Au-SnO2/ hierarchical structure | Acetone/100 ppm | 40.42 | 22 s/90 s | 200 °C | 0.445 ppm | [140] |
In2O3–CuO/3D-inverse opals structure | Acetone/0.5 ppm | 4.8 | 13 s/20 s | 370 °C | 0.05 ppm | [141] |
SnO2/Sm2O3/mulberry-shaped structure | Acetone/100 ppm | 41.14 | NA | 250 °C | 0.1 ppm | [143] |
WO3-SnO2/cactus like nano-composite | Acetone/600 ppm | 26 | NA | 360 °C | NA | [144] |
Cr doped WO3/urchin-like hollowspheres | Acetone/10 ppm | 13.3 | NA | 250 °C | 0.467 ppm | [146] |
ZnO/MoS2 nanosheets/core-shell nanostructure | Acetone/5 ppm & 20 ppm (No UV and UV) | 14.4 & 4.67 | 71 s/35 s & 56 s/69 s | 300 °C & 100 °C | 0.1 ppm | [147] |
RGO-h-WO3/nano-composite | Acetone/ 200 ppm | 1.5 | 14 s/NA | Room Temp. | <1 ppm | [148] |
2D-C3N4-SnO2/nano-composite | Acetone/100 ppm | 29 | 10 s/11 s | 380 °C | 0.067 ppm | [149] |
In loaded WO3/SnO2/nano-composite | Acetone/50 ppm | 66.5 | 11 s/5.5 s | 200 °C | <1 ppm | [150] |
Co3O4 nanowires–hollow carbon spheres/nano-composite | Acetone/200 ppm | 23 | NA | 200 °C | <1 ppm | [151] |
Fe2O3/In2O3/nano-composite | Acetone/100 ppm | >15 | 8 s/6 s | 200 °C | NA | [152] |
CuO-Ga2O3/nano-composite | Acetone/1.25 ppm | ~1.3 | NA | 300 °C | 0.1 ppm | [153] |
Materials/Nanostructure | Analyte/Concentration | Gas Response (Rair/Rgas) | Response/Recovery | Temp. | LOD | Ref |
---|---|---|---|---|---|---|
Sn3N4/ nanoparticles | Ethanol /100 ppm | 51.3 | NA | 120 °C | 0.07 ppm | [154] |
C doped TiO2/nanoparticles | n-Pentanol/100 ppm | 11.12 | 100 s/675 s | 170 °C | 0.5 ppm | [156] |
Pr doped In2O3/nanoparticles | Ethanol/50 ppm | 106 | 16.2 s/10 s | 240 °C | <1 ppm | [157] |
Au and Cl Comodified LaFeO3/nanoparticles | Ethanol/100 ppm | 102.1 & 220.7 | <40 s/NA | 120 °C | <10 ppm | [158] |
LaFexO3 −⸹/nanocrystals | Ethanol/1000 ppm | 132 | 1 s/1.5 s | 140 °C | <50 ppm | [159] |
Cl doped LaFexO3 −⸹/nanocrystals | Ethanol/200 ppm | 79.2 | 9 s/5 s | 136 °C | <100 ppm | [160] |
α-MoO3/nanocrystals | Ethanol/100 ppm | >55 | 34 s/70 s | 350 °C | NA | [161] |
CuO/Cu2O/nanocrystals | Ethanol/100 ppm | 10 & 9.5 | 5 s/10 s & 4.1 s/10.5 s | 300 °C & 275 °C | <10 ppm | [162] |
Gd1–xCaxFeO3/nanocrystals | Methanol/600 ppm | 117.7 | 1 min/1.1 min | 260 °C | <50 ppm | [163] |
Au modified ZnO/nanowires | Ethanol/500 ppm | 12.35 | 215 s/180 s | 350 °C | <10 ppm | [164] |
Fe2O3 nanoparticles coated SnO2/nanowires | Ethanol/200 ppm | 57.56 | 300 s/100 s | 300 °C | <5 ppm | [165] |
In2O3 nanoparticles decorated ZnS/nanowires | Ethanol/500 ppm | >25 | 400 s/100 s | 300 °C | <10 ppm | [166] |
Sr-doped cubic In2O3/rhombohedral In2O3/nanowires | Ethanol/1 ppm | 21 | <1 m (both) | 300 °C | 0.025 ppm | [167] |
Cr2O3 nanoparticles functionalized WO3/nanorods | Ethanol/200 ppm | 5.58 | 51.35 s/48.65 s | 300 °C | <5 ppm | [168] |
ZnO/nanorods | Ethanol/100 ppm | 23 | 26 s/43 s | Room Temp. | <5 ppm | [169] |
1D-ZnO/nanorods | Ethanol/100 ppm | 44.9 | 6 s/31 s | 300 °C | <10 ppm | [170] |
Pd nanoparticles decorated ZnO/nanorods | Ethanol/500 ppm | 81 | 6 s/95 s | 260 °C | <100 ppm | [171] |
SnO2/ZnO/nanorods | Ethanol/100 ppm | 18.1 | 2 s/38 s | 275 °C | <1 ppm | [172] |
rGO-WO3.0.33H2O/nanoneedles | Isopropanol/100 ppm | 4.96 | <90 s/NA | Room Temp. | 1 ppm | [173] |
Sm-doped SnO2/nanoarrays | Isopropanol/100 ppm | 117.7 | 12 s/20 s | 252 °C | ~1 ppm | [174] |
SmFeO3/nanofibers | Ethylene glycol/100 ppm | 18.19 | 41 s/47 s | 240 °C | ~5 ppm | [175] |
In doped NiO/nanofibers | methanol/200 ppm | 10.9 | 273 s/26 s | 300 °C | 25 ppm | [176] |
SiO2@SnO2/core-shell nanofibers | Ethanol/200 ppm | 37 | 13 s/16 s | NA | NA | [177] |
Yb doped In2O3/nanofibers | Ethanol/10 ppm | 40 & 5 | NA | Room Temp. | <1 & 5 ppm | [178] |
CuO/CuCo2O4/nanotubes | n-Propanol/10 ppm | 14 | 6.3 s/4.1 s | Room Temp. | <10 ppm | [179] |
CuO-NiO/nanotubes | Glycol/100 ppm | 10.35 | 15 s/45 s | 110 °C | 0.078 ppm | [180] |
NiO decorated SnO2/vertical standing nanotubes | Ethanol/1000 ppm | 123.7 | 10 s/58 s | 250 °C | NA | [181] |
Ca doped In2O3/nanotubes | Ethanol/100 ppm | 183.3 | 2 s/56 s | 240 °C | <5 ppm | [182] |
Au and Ni doped In2O3/nanotubes | Ethanol/100 ppm | 16.16 & 49.74 | 5 s/64 s & 3 s/49 s | 160 °C & 220 °C | <5 ppm (for both) | [183] |
W doped NiO/nanotubes | Ethanol/100 ppm | 40.56 | 54 s/22 s | 200 °C | <5 ppm | [184] |
In2O3 NPs deposited TiO2/nanobelts | Ethanol/100 ppm | >9 | 6 s/3 s | 100 °C | 1 ppm | [185] |
α-MoO3/nanobelts | Ethanol/800 ppm | 173 | <65 s/>15 s | 300 °C | <50 ppm | [186] |
Zn doped MoO3/nanobelts | Ethanol/1000 ppm | 321 | <121 s (for both) | 240 °C | 5 ppm | [187] |
MOF derived Fe2O3/nanocubes | Ethanol/100 ppm | ~6 | <120 s/<60 s | 160–230 °C | <1 ppm | [188] |
In2O3/nanocubes | Ethanol/100 ppm | 85 | 15 s/60 s | 300 °C | <5 ppm | [189] |
ZIF-8 derived ZnO/hollow nanocages | Ethanol/100 ppm | 139.41 | 2.8 s/56.4 s | 325 °C | 0.025 ppm | [191] |
ZIF-8 derived Ag functionalized ZnO/hollow nanocages | Ethanol/100 ppm | 84.6 | 5 s/10 s | 275 °C | 0.0231 ppm | [192] |
Cu2O/hollow dodecahedral nanocages | Ethanol/100 ppm | 4.6 | 112.4 s/157.5 s | 250 °C | NA | [193] |
Al-doped ZnO/nanosheets | Ethanol/100 ppm | 90.2 | 1.6 s/1.8 s | 370 °C | <1 ppm | [194] |
NiO NPs decorated SnO2/nanosheets | Ethanol/100 ppm | 153 | NA | 260 °C | <5 ppm | [195] |
CuO NPs decorated ZnO/nanosheets | Ethanol/200 ppm | 97 | <7 s/<40 s | 320 °C | <1 ppm | [196] |
SnS2/nanoflakes | Methanol/150 ppm | 1580 | 67 s/5 s | Room Temp. | NA | [197] |
Co doped ZnO/hexagonal nanoplates | Ethanol/300 ppm | 570 | 50 s/5 s | 300 °C | ~50 ppm | [199] |
ZIF-8 derived α-Fe2O3/ZnO/Au/nanoplates | Ethanol/100 ppm | 170 | 4 s/5 s | 280 °C | ~10 ppm | [200] |
ZnO/nanoplates | Ethanol/1000 ppm | 8.5 | 154.4 s (125 ppm)/114.2 s (1500 ppm) | 164 °C | NA | [201] |
Zn2SnO4/nanospheres | Ethanol/50 ppm | 23.4 | 18 s/45 s | 180 °C | ~5 ppm | [202] |
Indium Tungsten Oxide/ellipsoidal nanospheres | Methanol/400 ppm | >5 | 2 s/9 s | 312 °C | ~20 ppm | [203] |
Ag@In2O3/core-shell nanospheres | Ethanol/50 ppm | 72.56 | 13 s/8 s | 220 °C | ~2 ppm | [204] |
ZnSnO3/hollow nanospheres | n-Propanol/500 ppm | 64 | NA | 200 °C | 0.5 ppm | [205] |
ZnO/hollow nanospheres | n-Butanol/500 ppm | 292 | 36 s/9 s | 385 °C | ~10 ppm | [206] |
α-Fe2O3/hollow nanospheres | Methanol/10 ppm | 25 | 8 s/9 s | 280 °C | 1 ppm | [207] |
PdO NPs modified ZnO/nanoflowers | Methanol/150 ppm | >80 | 18 s/52.2 s | 150 °C | <0.5 ppm | [208] |
NiO/grained nanoflowers | Ethanol/150 ppm | 35 | 3 s/6 s | 200 °C | 2.6 ppm | [209] |
rGO nanosheets modified NiCo2S4/nanoflowers | Ethanol/100 ppm | >2.5 | 4.56 s/10.38 s | 100 °C | <10 ppm | [210] |
Pd and rGO modified TiO2/nanoflowers | Ethanol/700 ppm | >64% (for both) | 6.55 s/186.97 s & 75.64 s/147.16 s | 90 °C | <10 ppm | [211] |
Ag-functionalizedZnO/macro-/mesoporous- nanostructure | n-Butanol/100 ppm | 994.8 | 66 s/25 s | 240 °C | <1 ppm | [212] |
Al-doped ZnO/macro-/mesoporous- nanostructure | n-Butanol/100 ppm | 751.96 | 25 s/23 s | 300 °C | ~1 ppm | [213] |
Au loaded WO3/mesoporous- nanostructure | n-Butanol/100 ppm | 14.35 | 10 s/35 s | 250 °C | <10 ppm | [214] |
In doped ZnO/three dimensionally ordered mesoporous- nanostructure | Ethanol/100 ppm | 88 | 25 s/10 s | 250 °C | <5 ppm | [215] |
Si@ZnO NPs/ mesoporous- nanostructure | Ethanol/300 ppm | 62.5 | 0.27 min/3.5 min | 400 °C | <50 ppm | [216] |
Ag loaded g-C3N4/mesoporous- nanostructure | Ethanol/50 ppm | 49.2 | 11.5 s/7 s | 250 °C | <1 ppm | [217] |
Pd/SnO2/porous- nanostructure | Ethanol/5–200 ppm | ~90% | 1.5 s/18 s | 300 °C | <5 ppm | [218] |
SnO2/mesoporous- nanofibers | n-Butanol/300 ppm (for both) | 556.5 & 415.3 | 195 s/100 s & 64 s/36 s | 150 °C & 200 °C | <10 ppm | [219] |
TiO2–SnO2/hierarchical branched mesoporous nano- composite | Ethanol/50 ppm | 40 | 7 s/5 s | 350 °C | 0.2 ppm | [220] |
Co-Doped ZnO/hierarchical mesoporous- nanostructure | Ethanol/50 ppm | 54 | 22 s/53 s | 180 °C | 0.0454 ppm | [221] |
Fe2O3 nanorods on SnO2 nanospheres/hierarchical nano- composite | Ethanol/100 ppm | 23.512 | 5 s/12 s | 320 °C | <50 ppm | [222] |
MoO3-mixed SnO2/hierarchical nanostructure | Ethanol/100 ppm | 714 | 1 s (for all)/357 s, 8 s and 85 s | 260 °C | <10 ppm | [223] |
In2O3 Nanoparticles Decorated ZnO/hierarchical nanostructure | n-Butanol/100 ppm | 218.3 | 5 s/12 s | 260 °C | Down to sub-ppm | [224] |
SnO2–Si-NPA/honeycomb like nanostructure | Ethanol/50 ppm | 7.7 | 10 s/9 s | 320 °C | <10 ppm | [225] |
SnO2/rambutan-like hierarchical nanostructure | n-Butanol/100 ppm | 44.3 | 8 s/5 s | 140 °C | <20 ppm | [226] |
SnO2/raspberry-like hollow nanostructure | n-Butanol/100 ppm | 303.49 | 163 s/808 s | 160 °C | 1 ppm | [228] |
SnO2/snowflake-like hierarchical nanostructure | Ethanol/250 ppm | ~55 | 6 s/7 s | 400 °C | NA | [229] |
SnO2/pentagonal-cone assembled with nanorods | Ethanol/200 ppm | 98 | 11 s/18 s | 220 °C | 1 ppm | [231] |
ZIF-8 derived ZnO/neck- connected nanostructure films | Ethanol/50 ppm | 124 | 120 s/70 s | 375 °C | 0.5 ppm | [232] |
LaMnO3@ZnO/nano- composite | n-Butanol /100 ppm | 6 | 8 s/17 s | 300 °C | NA | [233] |
SnO2-Pd-Pt- In2O3/nano- composite | Methanol/100 ppm | 320.73 | 32 s/47 s | 160 °C | 0.1 ppm | [234] |
RGO-SnO2/nano- composite | Ethanol /100 ppm | 43 | 8 s/NA | 300 °C | ~5 ppm | [235] |
ZnO:Fe/nano-composite films | Ethanol/100 ppm | 61 & 36 | 1.1 s/1.45 s & 0.23 s/0.34 s | 250 °C & 350 °C | ~10 ppm | [237] |
g-C3N4-SnO2/nano- composite | Ethanol/500 ppm | 240 | 15 s/38 s | 300 °C | ~50 ppm | [238] |
Co3O4 nanosheet array-3D carbon foam/ nano- composite | Ethanol/100 ppm | 10.4 | 45 s/140 s | 100 °C | 0.2 ppm | [239] |
Materials/Nanostructure | Analyte/Concentration | Gas Response (Rair/Rgas) | Response/Recovery | Temp. | LOD | Ref |
---|---|---|---|---|---|---|
p-CuO/n-SnO2/core-shell nanowires | Formaldehyde/50 ppm | 2.42 | 52 s/80 s | 250 °C | <1.5 ppm | [247] |
ZnO/meso-structured nanowires (under UV) | Formaldehyde/50 ppm | 1223% | NA | Room Temp. | 0.005 ppm | [248] |
RGO coated Si/nanowires | Formaldehyde/10 ppm | 6.4 | 30 s/10 s | 300 °C | 0.035 ppm | [249] |
Co doped In2O3/nanorods | Formaldehyde/10 ppm | 23.2 | 60 s/120 s | 130 °C | 1 ppm | [250] |
Ag-functionalized Ni-doped In2O3/nanorods | Formaldehyde/100 ppm | 123.97 | 1.45 s/58.2 s | 160 °C | <2.5 ppm | [251] |
Ag doped LaFeO3/nanofibers | Formaldehyde/5 ppm | 4.8 | 2 s/4 s | 230 °C | ~5 ppm | [253] |
Co3O4-ZnO/core-shell nanofibers | Formaldehyde/100 ppm | >5 | 6 s/9 s | 220 °C | <10 ppm | [254] |
WO3/ZnWO4/nanofibers | Formaldehyde/5 ppm | 44.5 | 12 s/14 s | 220 °C | 1 ppm | [255] |
Pr-doped BiFeO3/hollow nanofibers | Formaldehyde/50 ppm | 17.6 | 17 s/19 s | 190 °C | 5 ppm | [256] |
Ca doped In2O3/nanotubes | Formaldehyde/100 ppm | 116 | 1 s/328 s | 130 °C | 0.06 ppm | [257] |
Er-doped SnO2/nanobelt | Formaldehyde/100 ppm | 9 | 17 s/25 s | 230 °C | 0.141 ppm | [258] |
Pt-decorated MoO3/nanobelt | Formaldehyde/100 ppm | ~25% | 17.8 s/10.5 s | Room Temp. | 1 ppm | [259] |
ZnSnO3/multi-shelled nanocubes | Formaldehyde/100 ppm | 37.2 | 1 s/59 s | 220 °C | <10 ppm | [260] |
ZnSn(OH)6/multi-shelled nanocubes | Formaldehyde/100 ppm | 56.6 | 1 s/89 s | 60 °C | 1 ppm | [261] |
MOF-derived Co3O4/CoFeO4/double-shelled nanocubes | Formaldehyde/10 ppm | 12.7 | 4 s/9 s | 139 °C | 0.3 ppm | [262] |
WOx clusters decorated In2O3/nanosheets | Formaldehyde/100 ppm | ~25 | 1 s/67 s | 170 °C | 0.1 ppm | [263] |
SnO2/nanosheets | Formaldehyde/200 ppm | 207.7 | 30 s/57 s | 200 °C | 0.1 ppm | [264] |
Au atom dispersed In2O3/nanosheets | Formaldehyde/50 ppm | 85.67 | 25 s/198 s | 100 °C | 0.00142 ppm | [266] |
SnS2/nanoflakes film | Formaldehyde/NA | NA | NA | 210 °C | 0.001/0.02 ppm | [268] |
0D ZnS/nanospheres and nanoparticles | Formaldehyde/100 ppm | 95.4 & 68.2 | 11 s/8 s | 295 °C | ~5 & 10 ppm | [269] |
Ag doped Zn2SnO4/SnO2/hollow nanospheres | Formaldehyde/50 ppm | 60 | 9 s/5 s | 140 °C | 5 ppm | [270] |
SnO2/nanoflowers (hierarchical) | Formaldehyde/100 ppm | 34.6 | 64 s/10 s | 300 °C | 5 ppm | [272] |
Sn3O4/rGO/nanoflower (hetero- structure) | Formaldehyde/100 ppm | 44 | 4 s/125 s | 150 °C | 1 ppm | [273] |
Au-loaded In2O3/porous hierarchical nanocubes | Formaldehyde/100 ppm | 37 | 3 s/8 s | 240 °C | 10 ppm | [274] |
Ag-loaded ZnO/porous hierarchical nano- composite | Formaldehyde/100 ppm | 170.42 | 12 s/90 s | 240 °C | 1 ppm | [275] |
Pd–WO3/m-CN/mesoporous nanocubes | Formaldehyde/25 ppm | 24.2 | 6.8 s/4.5 s | 120 °C | 1 ppm | [276] |
GO/SnO2/2D mesoporous nanosheets | Formaldehyde/100 ppm | 2275.7 | 81.3 s/33.7 s | 60 °C | 0.25 ppm | [277] |
ZnSnO3/2D mesoporous nanostructure | Formaldehyde/100 ppm | 45.8 | 3 s/6 s | 210 °C | 0.2 ppm | [278] |
LaFeO3/porous hierarchical nanostructure | Formaldehyde/50 ppm | 116 | 7 s/24 s | 125 °C | 0.05 ppm | [279] |
Bi doped Zn2SnO4/SnO2/porous nanospheres | Formaldehyde/50 ppm | 23.2 | 16 s/9 s | 180 °C | 10 ppm | [280] |
ZnO/porous nanoplates | Formaldehyde/100 ppm | 12 | 80 s/60 s | 240 °C | 10 ppm | [281] |
Au@ZnO/mesoporous nanoflowers | Formaldehyde/100 ppm | 45.28 | NA | 220 °C | NA | [282] |
Zn2SnO4/SnO2/hierarchical octahedral nanostructure | Formaldehyde/100 ppm | >60 | 76 s/139 s (for 20 ppm) | 200 °C | 2 ppm | [284] |
SnO2 nanofiber/nanosheet/hierarchical nanostructure | Formaldehyde/100 ppm | 57 | 4.7 s/11.6 s | 120 °C | ~0.5 ppm | [286] |
In2O3@SnO2/hierarchical nano- composite | Formaldehyde/100 ppm | 180.1 | 3 s/3.6 s | 120 °C | 0.01 ppm | [287] |
SnO2/cedar like hierarchical nano-micro structure | Formaldehyde/100 ppm | 13.3 | <1 s/13 s | 200 °C | ~5 ppm | [288] |
In2O3/urchin like hollow nanostructure | Formaldehyde/1 ppm | 20.9 | 46 s/90 s | 140 °C | 0.05 ppm | [289] |
SnO2/Butterfly like hierarchical nanostructure | Acetaldehyde/100 ppm | 178.3 | 28 s/58 s | 243 °C | <0.5 ppm | [290] |
SnO2/hollow hexagonal prisms | Formaldehyde/2 ppm | 882 | 19 s/NA | 120 °C | <2 ppm | [291] |
NiO/NiFe2O4/nano- tetrahedrons composite | Formaldehyde/100 ppm | 22.5 | 9 s/3 s | 240 °C | 0.2 ppm | [292] |
VG/SnO2/nano- composite | Formaldehyde/5 ppm | >5 | 46 s/95 s | Room Temp. | 0.02 ppm | [293] |
Materials/Nanostructure | Analyte/Concentration | Gas Response (Rair/Rgas) | Response/Recovery | Temp. | LOD | Ref |
---|---|---|---|---|---|---|
Co3O4/ZnO/hybrid nanoparticles | Triethylamine/200 ppm | 282.3 | 25 s/36 s | 280 °C | ~10 ppm | [296] |
Ho-doped SnO2/nanoparticles | Triethylamine/50 ppm | 12 | 2 s/2 min | 175 °C | ~5 ppm | [297] |
CuCrO2/nanoparticles | Triethylamine/100 ppm | ~5 | 90 s/120 s | 140 °C | ~10 ppm | [298] |
Ag/Pt/W18O49/nanowires | Triethylamine/50 ppm | 813 | 15 s/35 s (for 2 ppm) | 240 °C | 0.071 ppm | [299] |
1D SnO2 coated ZnO/hybrid nanowires | n-Butylamine/10 ppm | 7.4 | 40 s/80 s | 240 °C | ~1 ppm | [300] |
V2O5 -decorated α-Fe2O3/nanorods | Diethylamine/100 ppm | 8.9 | 2 s/40 s | 350 °C | ~5 ppm | [301] |
Au NPs decorated WO3/nanorods | Trimethyl-amine/100 ppm | 76.7 | 6 s/7 s | 280 °C | ~5 ppm | [302] |
Ag NPs decorated α-MoO3/nanorods | Triethylamine/100 ppm | 408.6 | 3 s/107 s | 200 °C | 0.035 ppm | [303] |
Cr dopedα-MoO3/nanorods | Triethylamine/100 ppm | 150.25 | 7 s/80 s | 200 °C | ~1 ppm | [304] |
Acidic α-MoO3/nanorods | Triethylamine/100 ppm | 101.74 | 4 s/88 s | 300 °C | 0.1 ppm | [305] |
Au@SnO2/α-Fe2O3/core-shell nanoneedles on alumina tubes | Triethylamine/100 ppm | 39 | 4 s/203 s | 300 °C | ~2 ppm | [307] |
Al2O3/α-Fe2O3/nanofibers | Triethylamine/100 ppm | 15.19 | 1 s/17 s | 250 °C | ~0.5 ppm | [308] |
In2O3/hierarchical nanofibers (with nanoparticles) | Triethylamine/50 ppm | 87.8 | 148 s/40 min | 40 °C | ~5 ppm | [309] |
Nb doped TiO2/nanotubes | Dimethyl-amine/50 ppm | 9.1 | ≥300 s (for both) | 300 °C | ~5 ppm | [312] |
Au NPs decorated MoO3/nanobelts | Trimethyl-amine/50 ppm | 70 | 6 s/9 s | 280 °C | ~5 ppm | [313] |
W doped MoO3/nanobelts | Trimethyl-amine/50 ppm | 13.8 | 6 s/11 s | 280 °C | ~5 ppm | [314] |
RuO2 NPs decorated MoO3/nanobelts | Triethylamine/10 ppm | 75 | 2 s/10 s | 260 °C | ~1 ppm | [315] |
ZnO-SnO2/nanobelts | Triethylamine/100 ppm | 9.9 | 1.8 s/18 s | 220 °C | ~1 ppm | [316] |
In2O3/nanocubes | Triethylamine/100 ppm | 175 | 11 s/14 s | 180 °C | ~10 ppm | [317] |
WO3/nanosheets | Triethylamine/1000 ppm | ̴14 | NA | Room Temp. | ~5 ppm | [318] |
Au@ZnO- SnO2/nanosheets | Triethylamine/100 ppm | 115 | 7 s/30 s | 300 °C | ~2 ppm | [319] |
TiO2 NPs decorated CuO/nanosheets | Triethylamine/5 ppm | 12.7 | 45 s/202 s | 160 °C | 0.5 ppm | [320] |
Rh-SnO2/nanosheets | Triethylamine/100 ppm | 607.2 | 49 s/24 s | 325 °C | ~1 ppm | [321] |
Ag modified Zn2SnO4/hexagonal nanoflakes- hollow octahedron | Triethylamine/50 ppm | 83.6 | <1 s/20 s | 220 °C | ~1 ppm | [322] |
Zn2SnO4- doped SnO2/hollow nanospheres | Phenylamine/50 ppm | 4.53 | 10 s/12 s | 300 °C | ~1 ppm | [323] |
CeO2-SnO2/nanoflowers | Triethylamine/200 ppm | 252.2 | NA | 310 °C | ~20 ppm | [324] |
WO3-SnO2/mesoporous nanostructure | Triethylamine/50 ppm | 87 | 6 s/7 s | 220 °C | ~1 ppm | [325] |
CuO/porous particles with diverse morphologies | Triethylamine/100 ppm | 5.6–102 | <40 s/<260 s | 230 °C | ~5 ppm | [326] |
In2O3/mesoporous nanocubes | Trimethyl-amine/10 ppm | 57 | 4 s/11 s | 160 °C | ~5 ppm | [327] |
CeO2/porous nanospheres | Triethylamine/100 ppm | 4.67 | 13 s/<230 s | Room Temp. | ~5 ppm | [328] |
Au decahedrons-decorated α-Fe2O3/porous nanorods | Triethylamine/50 ppm | 17 | 12 s/18 s | 40 °C | 1 ppm | [329] |
ZnCo2O4/porous nano- structures | Triethylamine/100 ppm | 14 | 7 s/57 s | 200 °C | ~5 ppm | [330] |
NiCo2O4/porous nanoplates | Triethylamine/10 ppm | 2.58 | <33 s/42 s | 220 °C | 0.5 ppm | [331] |
SnO2/porous thin films | Triethylamine/10 ppm | 150.5 | 53 s/120 s | Room Temp. | 0.11 ppm | [332] |
Fe2O3/ZnFe2O4/porous nano- composite | Triethylamine/20 ppm | 60.24 | 2 s/7 s | 300 °C | 0.2 ppm | [333] |
Au-Modified ZnO/porous hierarchical nanosheets | Trimethyl-amine/30 ppm | 65.8 | 3.3 s/64 s | 260 °C | 0.01 ppm | [334] |
α-Fe2O3/snowflake-like hierarchical nanostructure | Trimethyl-amine/100 ppm | 10.9 | 0.9 s/1.5 s | 260 °C | ~5 ppm | [335] |
Zn2SnO4–ZnO/hierarchical nano- composite | Triethylamine/100 ppm | 175.5 | 12 s/25 s | 200 °C | 0.4 ppm | [336] |
MoS2/GO/3D hierarchical nano- composite | Triethylamine/100 ppm | 192 | 20 s/18 s | 260 °C | 1 ppm | [337] |
Au NPs decorated Co3O4/hierarchical nanochains | Triethylamine/300 ppm | >40 | 94 s/100 s | 210 °C | ~10 ppm | [338] |
WO3/hierarchical flower like spheres | Triethylamine/10 ppm | 11.6 | 3 s/55 s | 205 °C | 0.083 ppm | [339] |
ZnO/Au/hemishperical nanostructure | Triethylamine/100 ppm | 104.8 | 5 s/2 s | 260 °C | ~10 ppm | [340] |
SnO2/Au/Fe2O3/nanoboxes | Triethylamine/100 ppm | 126.84 | 7 s/10 s | 240 °C | 0.05 ppm | [341] |
Au decorated ZnO/nest-like nanostructure | Triethylamine/200 ppm | 625 | 4 s/26 s | 320 °C | 1 ppm | [342] |
Pd doped ZnO/agaric like nanostructure | Aniline/100 ppm | 182 | 29 s/23 s | 280 °C | 0.5 ppm | [343] |
Co3O4@MnO2/shish-kebab like nanostructure | Triethylamine/100 ppm | 9.13 | 93 s/92 s | 250 °C | ~10 ppm | [344] |
Au@ZnO/core-shell nanostructure | Triethylamine/5 ppm | 12.2% | 27 s/46 s | 50 °C | ~1 ppm | [345] |
Au/Co3O4/W18O49/hollow composite nanospheres | Triethylamine/2 ppm | 16.7 | 9 s/14 s | 270 °C | 0.081 ppm | [347] |
α-Fe2O3@α- MoO3/nano- composite | Triethylamine/50 ppm | 76 | 4 s/370 s | 280 °C | ~2 ppm | [348] |
rGO decorated W doped BiVO4/hierarchical nano- composite | Trimethyl-amine/20 ppm | 12.8 | 16 s/NA | 135 °C | 0.63 ppm | [350] |
Au@MoS2/nano- composite | Triethylamine/50 ppm | 44 | 9 s/91 s | 30 °C | ~2 ppm | [351] |
Materials/Nanostructure | Analyte/Concentration | Gas Response (Rair/Rgas) | Response/Recovery | Temp. | LOD | Ref |
---|---|---|---|---|---|---|
Ag-LaFeO3/nanoparticles | Xylene/5 ppm | 36.2 | 114 s/55 s | 99 °C | <1 ppm | [352] |
Ag-LaFeO3/nanoparticles | Xylene/10 ppm | 16.76 | 68 s/36 s | 125 °C | 0.2 ppm | [353] |
Au-ZnO/nanoparticles | Xylene/100 ppm | 92 | 4 s/6 min | 377 °C | NA | [354] |
cobalt porphyrin (CoPP)-functionalized TiO2/nanoparticles | Benzene, Toluene and Xylene (BTX)/10 ppm | >5 | 40 s/80 s | 240 °C | 0.005 ppm | [355] |
In-doped ZnO/Quantum dots | Acetylene/10 ppm | 19.3 | ~100 s/NA | 400 °C | 0.1 ppm | [356] |
Metal organic Frameworks/nanocrystals | Benzene, Toluene, Ethyl benzene and Xylene (BTEX)/50 ppm | >20 | NA | Room Temp. | 0.4 ppm | [357] |
α-Fe2O3/SnO2/nanowire arrays | Toluene/100 ppm | 49.7 | 20 s/15 s | 90 °C | ~50 ppm | [358] |
Pt NPs sensitizedSi NW-TeO2/nanowires | Toluene/50 ppm | 45 | 20 s/500 s | 200 °C | ~10 ppm | [359] |
CoPP-ZnO/nanorods | Toluene/10 ppm | >2.5 | NA | NA | 0.002 ppm | [361] |
α-MoO3/nanoarrays | Xylene/100 ppm | 19.2 | 1 s/≤20 s | 370 °C | ~10 ppm | [362] |
Y doped α-MoO3/nanoarrays | Xylene/100 ppm | 28.3 | 1 s/~15 s | 370 °C | ~5 ppm | [363] |
MOF-driven metal- embedded metal oxide (Pd@ZnO- WO3)/nanofibers | Toluene/1 ppm | 22.22 | <20 s/NA | 350 °C | 0.1 ppm | [364] |
V2O5/nanofibers | Xylene/500 ppm | 191 | 80 s/50 s (100 ppm) | Room Temp. | ~5 ppm | [365] |
Pd functionalized SnO2/nanofibers | Butane/3000 ppm | 47.58 | 3.20 s/6.28 s | 260 °C | ~10 ppm | [366] |
Pt-decorated CNTs/nanotubes | Toluene/5 ppm | 5.06 | 90 s/520 s | 150 °C | ~1 ppm | [367] |
3D TiO2/G-CNT/nanotubes | Toluene/500 ppm | 42.9% | 9–11 s (for both) | Room Temp. | 0.4 ppm | [368] |
NiCo2O4/nanotubes (hierarchical) | Xylene/100 ppm | 9.25 | 20 s/9 s | 220 °C | ~1 ppm | [369] |
Fe doped MoO3/nanobelts | Xylene/100 ppm | 6.1 | 20 s/75 s | 206 °C | ~5 ppm | [370] |
Au decorated ZnO/In2O3/belt-tooth nanostructure | Acetylene/100 ppm | 5 | 8.5 s/NA | 90 °C | ~25 ppm | [371] |
ZnO/ZnCo2O4/hollow nanocages | Xylene/100 ppm | 34.26 | NA | 320 °C | 0.126 ppm | [372] |
Au functionalizedWO3·H2O/nanosheets | Toluene/100 ppm | 50 | 2 s/9 s | 300 °C | ~10 ppm | [373] |
Nb-doped NiO/nanosheets | Xylene/100 ppm | 335.1 | 63 s/66 s | 370 °C | 0.002 ppm | [375] |
CdO/hexagonal nanoflakes | liquefied petroleum gas (LPG)/500 ppm | ~27.5 | 8.6 s/10 s | 270 °C | ~10 ppm | [376] |
ZnO-CeO2/triangular nanoflakes | BTEX/50 ppm | 10–21 | 8 s/10 s | 200 °C | 0.01 ppm | [377] |
ZnFe2O4/nanospheres | Toluene/100 ppm | 9.98 | 18.14 s/29.2 s | 300 °C | ~1 ppm | [378] |
Pt doped CoCr2O4/hollow nanospheres | Xylene/5 ppm | 559 | 300 s/600 s | 275 °C | 0.0187 ppm | [379] |
Pd-SnO2/nanoporous composite | Methane/3000 ppm | 17.6 | 3 s/5 s | 340 °C | ~100 ppm | [380] |
Co3O4–TiO2/mesoporous hierarchical nanostructure | Xylene/50 ppm | 113 | 130 s/150 s | 115 °C | ~5 ppm | [381] |
Au loaded MoO3/hollow nanospheres (hierarchical) | Toluene and Xylene/100 ppm | 17.5 & 22.1 | 19 s/6 s & 1.6 s/2 s | 250 °C | 0.1 & 0.5 ppm | [382] |
Pt-SnO2/hollow nanospheres (hierarchical) | Methane/250 ppm | 4.88 & 4.33 | NA | 300 °C & 340 °C | ~25 ppm | [383] |
NiO/NiMoO4/hierarchical nanospheres | p-Xylene/5 ppm | 101.5 | 10-50 s/20-200 s | 375 °C | 0.02 ppm | [384] |
Co3O4/hierarchical nanostructure | Toluene/200 ppm | 8.5 | 10 s/30 s | 180 °C | ~5 ppm | [385] |
WO3/hierarchical nanostructure | Acetylene/200 ppm | 32.31 | 12 s/17 s | 275 °C | <5 ppm | [386] |
PbS NPs decorated CdO/necklace like nanobeads | LPG/1176 ppm | ~50 | 148 s/142 s | Room Temp. | ~300 ppm | [387] |
Au loaded TiO2/hedgehog-like nanostructure | Xylene/100 ppm | 6.49 | 5 s/2 s | 375 °C | ~2 ppm | [388] |
Pd/PdO/S-SnO2/nano- composite film | methane/300 ppm | 12.3 | 8 s/12 s | 240 °C | <50 ppm | [390] |
rGO/Co3O4/nano- composite | Toluene/5 ppm | 11.3 | NA | 110 °C | ≥0.5ppm | [391] |
WO3 decorated TiO2 NPs/nano- composite | Xylene/10 ppm | 92.53 | 410 s/2563 s | 160 °C | 1 ppm | [392] |
BGQD/Ag–LaFeO3/nano- composite | Benzene/1 ppm | 17.5 | NA | 65 °C | <1 ppm | [393] |
Ag/Bi2O3/nano- composite | Toluene/50 ppm | 89.2% | NA | Room Temp. | ~10 ppm | [394] |
AgO loaded LaFeO3/nano- composite | Acetylene/100 ppm | 60 | 6.1 min/4.7 min | 200 °C | ~5 ppm | [395] |
CuO NPs-Ti3C2TxMXene/nano- composite | Toluene/50 ppm | 11.4 | 270 s/10 s | 250 °C | 0.32 ppm | [396] |
Graphene/SnO2 NPs nano-composite | BTX/0.2–11 ppm | 1–28 | NA | RT and 250 °C | ~0.2 ppm | [397] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shellaiah, M.; Sun, K.W. Inorganic-Diverse Nanostructured Materials for Volatile Organic Compound Sensing. Sensors 2021, 21, 633. https://doi.org/10.3390/s21020633
Shellaiah M, Sun KW. Inorganic-Diverse Nanostructured Materials for Volatile Organic Compound Sensing. Sensors. 2021; 21(2):633. https://doi.org/10.3390/s21020633
Chicago/Turabian StyleShellaiah, Muthaiah, and Kien Wen Sun. 2021. "Inorganic-Diverse Nanostructured Materials for Volatile Organic Compound Sensing" Sensors 21, no. 2: 633. https://doi.org/10.3390/s21020633
APA StyleShellaiah, M., & Sun, K. W. (2021). Inorganic-Diverse Nanostructured Materials for Volatile Organic Compound Sensing. Sensors, 21(2), 633. https://doi.org/10.3390/s21020633