A Deep Learning Pipeline for Grade Groups Classification Using Digitized Prostate Biopsy Specimens
Abstract
:1. Introduction
2. Methods
2.1. Deep Learning System
Algorithm 1: Preprocessing step of developing input data for a convolution neural network (CNN). Value of N is 100, 150, or 200. |
Input: Prostate biopsy specimens digitized. |
Output: Classified selected patches into Gleason pattern labels.
|
2.2. Patch- and Pixel-Wise Classification
2.3. Grade Groups System
3. Results
3.1. Patch-Wise Classification for Each CNN
3.2. Grade Group Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Cancer Society. Cancer Facts and Figures. 2021. Available online: https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html (accessed on 3 October 2021).
- Litwin, M.S.; Tan, H.J. The diagnosis and treatment of prostate cancer: A review. JAMA 2017, 317, 2532–2542. [Google Scholar] [CrossRef]
- Veloso, S.G.; Lima, M.F.; Salles, P.G.; Berenstein, C.K.; Scalon, J.D.; Bambirra, E.A. Interobserver agreement of Gleason score and modified Gleason score in needle biopsy and in surgical specimen of prostate cancer. Int. Braz. J. Urol. 2007, 33, 639–651. [Google Scholar] [CrossRef]
- Nagpal, K.; Foote, D.; Liu, Y.; Chen, P.H.C.; Wulczyn, E.; Tan, F.; Olson, N.; Smith, J.L.; Mohtashamian, A.; Wren, J.H.; et al. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. NPJ Digit. Med. 2019, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Matoso, A.; Epstein, J.I. Defining clinically significant prostate cancer on the basis of pathological findings. Histopathology 2019, 74, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A. The 2014 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef]
- Melia, J.; Moseley, R.; Ball, R.; Griffiths, D.; Grigor, K.; Harnden, P.; Jarmulowicz, M.; McWilliam, L.; Montironi, R.; Waller, M.; et al. A UK-based investigation of inter-and intra-observer reproducibility of Gleason grading of prostatic biopsies. Histopathology 2006, 48, 644–654. [Google Scholar] [CrossRef]
- Egevad, L.; Ahmad, A.S.; Algaba, F.; Berney, D.M.; Boccon-Gibod, L.; Compérat, E.; Evans, A.J.; Griffiths, D.; Grobholz, R.; Kristiansen, G.; et al. Standardization of Gleason grading among 337 European pathologists. Histopathology 2013, 62, 247–256. [Google Scholar] [CrossRef]
- Kvåle, R.; Møller, B.; Wahlqvist, R.; Fosså, S.D.; Berner, A.; Busch, C.; Kyrdalen, A.E.; Svindland, A.; Viset, T.; Halvorsen, O.J. Concordance between Gleason scores of needle biopsies and radical prostatectomy specimens: A population-based study. BJU Int. 2009, 103, 1647–1654. [Google Scholar] [CrossRef]
- Bottke, D.; Golz, R.; Störkel, S.; Hinke, A.; Siegmann, A.; Hertle, L.; Miller, K.; Hinkelbein, W.; Wiegel, T. Phase 3 study of adjuvant radiotherapy versus wait and see in pT3 prostate cancer: Impact of pathology review on analysis. Eur. Urol. 2013, 64, 193–198. [Google Scholar] [CrossRef]
- Kasivisvanathan, V.; Rannikko, A.S.; Borghi, M.; Panebianco, V.; Mynderse, L.A.; Vaarala, M.H.; Briganti, A.; Budäus, L.; Hellawell, G.; Hindley, R.G.; et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N. Engl. J. Med. 2018, 378, 1767–1777. [Google Scholar] [CrossRef]
- Hammouda, K.; Khalifa, F.; Soliman, A.; Abdeltawab, H.; Ghazal, M.; Abou El-Ghar, M.; Haddad, A.; Darwish, H.E.; Keynton, R.; El-Baz, A. A 3D CNN with a Learnable Adaptive Shape Prior for Accurate Segmentation of Bladder Wall Using MR Images. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; pp. 935–938. [Google Scholar]
- Wildeboer, R.R.; van Sloun, R.J.; Wijkstra, H.; Mischi, M. Artificial intelligence in multiparametric prostate cancer imaging with focus on deep-learning methods. Comput. Methods Programs Biomed. 2020, 189, 105316. [Google Scholar] [CrossRef] [PubMed]
- Hammouda, K.; Khalifa, F.; Soliman, A.; Ghazal, M.; Abou El-Ghar, M.; Badawy, M.; Darwish, H.; Khelifi, A.; El-Baz, A. A multiparametric MRI-based CAD system for accurate diagnosis of bladder cancer staging. Comput. Med. Imaging Graph. 2021, 90, 101911. [Google Scholar] [CrossRef]
- Reda, I.; Khalil, A.; Elmogy, M.; Abou El-Fetouh, A.; Shalaby, A.; Abou El-Ghar, M.; Elmaghraby, A.; Ghazal, M.; El-Baz, A. Deep learning role in early diagnosis of prostate cancer. Technol. Cancer Res. Treat. 2018, 17, 1533034618775530. [Google Scholar] [CrossRef] [Green Version]
- Schelb, P.; Kohl, S.; Radtke, J.P.; Wiesenfarth, M.; Kickingereder, P.; Bickelhaupt, S.; Kuder, T.A.; Stenzinger, A.; Hohenfellner, M.; Schlemmer, H.P.; et al. Classification of cancer at prostate MRI: Deep learning versus clinical PI-RADS assessment. Radiology 2019, 293, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Mehrtash, A.; Sedghi, A.; Ghafoorian, M.; Taghipour, M.; Tempany, C.M.; Wells, W.M., III; Kapur, T.; Mousavi, P.; Abolmaesumi, P.; Fedorov, A. Classification of clinical significance of MRI prostate findings using 3D convolutional neural networks. In Proceedings of the Medical Imaging 2017: Computer-Aided Diagnosis, Orlando, FL, USA, 22 May 2017; International Society for Optics and Photonics: Bellingham, WA, USA, 2017; Volume 10134, p. 101342A. [Google Scholar]
- Arvaniti, E.; Fricker, K.S.; Moret, M.; Rupp, N.; Hermanns, T.; Fankhauser, C.; Wey, N.; Wild, P.J.; Rueschoff, J.H.; Claassen, M. Automated Gleason grading of prostate cancer tissue microarrays via deep learning. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Bulten, W.; Pinckaers, H.; van Boven, H.; Vink, R.; de Bel, T.; van Ginneken, B.; van der Laak, J.; de Kaa, C.H.v.; Litjens, G. Automated gleason grading of prostate biopsies using deep learning. arXiv 2019, arXiv:1907.07980. [Google Scholar]
- Hammouda, K.; Khalifa, F.; Abdeltawab, H.; Elnakib, A.; Giridharan, G.; Zhu, M.; Ng, C.; Dassanayaka, S.; Kong, M.; Darwish, H.; et al. A new framework for performing cardiac Strain Analysis from cine MRi imaging in Mice. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Kamnitsas, K.; Ledig, C.; Newcombe, V.F.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2017, 36, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Kaur, M.; Kaur, J.; Kaur, J. Survey of contrast enhancement techniques based on histogram equalization. Int. J. Adv. Comput. Sci. Appl. 2011, 2, 2011. [Google Scholar] [CrossRef]
- Nnolim, U.A. Smoothing and enhancement algorithms for underwater images based on partial differential equations. J. Electron. Imaging 2017, 26, 023009. [Google Scholar] [CrossRef]
- Shin, H.C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef] [Green Version]
- Website for the Dataset. 2021. Available online: https://www.kaggle.com/c/prostate-cancer-grade-assessment (accessed on 3 October 2021).
- Hossin, M.; Sulaiman, M.N. A review on evaluation metrics for data classification evaluations. Int. J. Data Min. Knowl. Manag. Process. 2015, 5, 1. [Google Scholar]
- McNee, S.M.; Riedl, J.; Konstan, J.A. Being accurate is not enough: How accuracy metrics have hurt recommender systems. In Proceedings of the CHI’06 Extended Abstracts on Human Factors in Computing Systems, New York, NY, USA, 22–27 April 2006; pp. 1097–1101. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Lane, J.A.; Donovan, J.L.; Davis, M.; Walsh, E.; Dedman, D.; Down, L.; Turner, E.L.; Mason, M.D.; Metcalfe, C.; Peters, T.J.; et al. Active monitoring, radical prostatectomy, or radiotherapy for localised prostate cancer: Study design and diagnostic and baseline results of the ProtecT randomised phase 3 trial. Lancet Oncol. 2014, 15, 1109–1118. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.C.; Rumble, R.B.; Loblaw, D.A.; Finelli, A.; Ehdaie, B.; Cooperberg, M.R.; Morgan, S.C.; Tyldesley, S.; Haluschak, J.J.; Tan, W.; et al. Active surveillance for the management of localized prostate cancer (Cancer Care Ontario guideline): American Society of Clinical Oncology clinical practice guideline endorsement. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2016, 34, 2182–2190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brimo, F.; Schultz, L.; Epstein, J.I. The value of mandatory second opinion pathology review of prostate needle biopsy interpretation before radical prostatectomy. J. Urol. 2010, 184, 126–130. [Google Scholar] [CrossRef]
- Steiner, D.F.; MacDonald, R.; Liu, Y.; Truszkowski, P.; Hipp, J.D.; Gammage, C.; Thng, F.; Peng, L.; Stumpe, M.C. Impact of deep learning assistance on the histopathologic review of lymph nodes for metastatic breast cancer. Am. J. Surg. Pathol. 2018, 42, 1636. [Google Scholar] [CrossRef]
- Liu, Y.; Kohlberger, T.; Norouzi, M.; Dahl, G.E.; Smith, J.L.; Mohtashamian, A.; Olson, N.; Peng, L.H.; Hipp, J.D.; Stumpe, M.C. Artificial intelligence–based breast cancer nodal metastasis detection: Insights into the black box for pathologists. Arch. Pathol. Lab. Med. 2019, 143, 859–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gislén, A.; Dacke, M.; Kröger, R.H.; Abrahamsson, M.; Nilsson, D.E.; Warrant, E.J. Superior underwater vision in a human population of sea gypsies. Curr. Biol. 2003, 13, 833–836. [Google Scholar] [CrossRef] [Green Version]
- Allsbrook, W.C., Jr.; Mangold, K.A.; Johnson, M.H.; Lane, R.B.; Lane, C.G.; Epstein, J.I. Interobserver reproducibility of Gleason grading of prostatic carcinoma: General pathologist. Hum. Pathol. 2001, 32, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Courtiol, P.; Maussion, C.; Moarii, M.; Pronier, E.; Pilcer, S.; Sefta, M.; Manceron, P.; Toldo, S.; Zaslavskiy, M.; Le Stang, N.; et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat. Med. 2019, 25, 1519–1525. [Google Scholar] [CrossRef]
- Wulczyn, E.; Steiner, D.F.; Xu, Z.; Sadhwani, A.; Wang, H.; Flament-Auvigne, I.; Mermel, C.H.; Chen, P.H.C.; Liu, Y.; Stumpe, M.C. Deep learning-based survival prediction for multiple cancer types using histopathology images. PLoS ONE 2020, 15, e0233678. [Google Scholar] [CrossRef] [PubMed]
- Marrone, M.; Potosky, A.L.; Penson, D.; Freedman, A.N. A 22 gene-expression assay, Decipher®(GenomeDx Biosciences) to predict five-year risk of metastatic prostate cancer in men treated with radical prostatectomy. PLoS Curr. 2015, 7. [Google Scholar] [CrossRef] [Green Version]
- Kweldam, C.F.; Kümmerlin, I.P.; Nieboer, D.; Verhoef, E.I.; Steyerberg, E.W.; Van der Kwast, T.H.; Roobol, M.J.; van Leenders, G.J. Disease-specific survival of patients with invasive cribriform and intraductal prostate cancer at diagnostic biopsy. Mod. Pathol. 2016, 29, 630–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Shape of Cell Tissues | GP | Risk Level | GS | GG | |
---|---|---|---|---|---|
stroma (connective tissue, non-epithelium tissue) | GP1 | - | - | - | |
healthy (benign) epithelium | GP2 | - | - | - | |
moderately differentiated | Distinctly infiltration of cells form glands at margins | GP3 | Low | GP3 + GP3 = GS6 | GG1 |
Favorable | GP3 + GP4 = GS7 | GG2 | |||
moderately and Poorly differentiated | Irregular messes of neoplastic cells with few glands | GP4 | Unfavorable | GP4 + GP3 = GS7 | GG3 |
High | GP4 + GP4 = GS8 | GG4 | |||
GP3 + GP5 = GS8 | |||||
GP5 + GP3 = GS8 | |||||
Poorly differentiated | Lack of or occasional glands, sheets of cells | GP5 | High | GP4 + GP5 = GS9 | GG5 |
GP5 + GP4 = GS9 | |||||
GP5 + GP5 = GS10 |
Precision | Recall | F1-Score | Precision | Recall | F1-Score | Precision | Recall | F1-Score | |
---|---|---|---|---|---|---|---|---|---|
Class 1 | 0.86 | 0.97 | 0.91 | 0.92 | 0.97 | 0.94 | 0.96 | 0.94 | 0.95 |
Class2 | 0.74 | 0.79 | 0.76 | 0.77 | 0.80 | 0.78 | 0.81 | 0.82 | 0.81 |
Class3 | 0.66 | 0.63 | 0.76 | 0.68 | 0.62 | 0.65 | 0.75 | 0.68 | 0.71 |
Class4 | 0.66 | 0.44 | 0.52 | 0.63 | 0.55 | 0.59 | 0.64 | 0.66 | 0.65 |
Class5 | 0.53 | 0.66 | 0.59 | 0.46 | 0.63 | 0.53 | 0.42 | 0.53 | 0.47 |
Accuracy | 0.70 | 0.70 | 0.70 | 0.73 | 0.73 | 0.73 | 0.76 | 0.76 | 0.76 |
Macro-averaged | 0.68 | 0.70 | 0.69 | 0.69 | 0.71 | 0.70 | 0.72 | 0.73 | 0.72 |
Weighted-average | 0.70 | 0.70 | 0.70 | 0.73 | 0.73 | 0.72 | 0.77 | 0.76 | 0.76 |
VGG-16 | ResNet50 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Precision | Recall | F1-Score | Precision | Recall | F1-Score | Precision | Recall | F1-Score | |
Class1 | 0.96 | 0.94 | 0.95 | 0.87 | 0.82 | 0.85 | 0.94 | 0.93 | 0.94 |
Class2 | 0.81 | 0.82 | 0.81 | 0.76 | 0.56 | 0.64 | 0.74 | 0.93 | 0.82 |
Class3 | 0.75 | 0.68 | 0.71 | 0.65 | 0.58 | 0.62 | 0.75 | 0.65 | 0.70 |
Class4 | 0.64 | 0.66 | 0.65 | 0.51 | 0.63 | 0.56 | 0.72 | 0.54 | 0.61 |
Class5 | 0.42 | 0.53 | 0.47 | 0.35 | 0.59 | 0.44 | 0.58 | 0.76 | 0.66 |
Accuracy | 0.76 | 0.76 | 0.76 | 0.65 | 0.65 | 0.65 | 0.75 | 0.75 | 0.75 |
Macro-averaged | 0.72 | 0.73 | 0.72 | 0.63 | 0.64 | 0.62 | 0.75 | 0.76 | 0.75 |
Weighted-average | 0.77 | 0.76 | 0.76 | 0.68 | 0.65 | 0.65 | 0.77 | 0.76 | 0.76 |
Precision | Recall | F1-Score | Accuracy | NPV | Cases | |
---|---|---|---|---|---|---|
Benign | 0.75 | 0.75 | 0.76 | 0.92 | 0.95 | 8 |
GG1 | 0.71 | 0.71 | 0.71 | 0.92 | 0.95 | 7 |
GG2 | 0.75 | 0.50 | 0.60 | 0.92 | 0.93 | 6 |
GG3 | 0.71 | 0.45 | 0.56 | 0.84 | 0.86 | 11 |
GG4 | 0.23 | 0.50 | 0.32 | 0.80 | 0.92 | 6 |
GG5 | 0.73 | 0.67 | 0.70 | 0.86 | 0.89 | 12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammouda, K.; Khalifa, F.; El-Melegy, M.; Ghazal, M.; Darwish, H.E.; Abou El-Ghar, M.; El-Baz, A. A Deep Learning Pipeline for Grade Groups Classification Using Digitized Prostate Biopsy Specimens. Sensors 2021, 21, 6708. https://doi.org/10.3390/s21206708
Hammouda K, Khalifa F, El-Melegy M, Ghazal M, Darwish HE, Abou El-Ghar M, El-Baz A. A Deep Learning Pipeline for Grade Groups Classification Using Digitized Prostate Biopsy Specimens. Sensors. 2021; 21(20):6708. https://doi.org/10.3390/s21206708
Chicago/Turabian StyleHammouda, Kamal, Fahmi Khalifa, Moumen El-Melegy, Mohamed Ghazal, Hanan E. Darwish, Mohamed Abou El-Ghar, and Ayman El-Baz. 2021. "A Deep Learning Pipeline for Grade Groups Classification Using Digitized Prostate Biopsy Specimens" Sensors 21, no. 20: 6708. https://doi.org/10.3390/s21206708
APA StyleHammouda, K., Khalifa, F., El-Melegy, M., Ghazal, M., Darwish, H. E., Abou El-Ghar, M., & El-Baz, A. (2021). A Deep Learning Pipeline for Grade Groups Classification Using Digitized Prostate Biopsy Specimens. Sensors, 21(20), 6708. https://doi.org/10.3390/s21206708