A Review: Application and Implementation of Optic Fibre Sensors for Gas Detection
Abstract
:1. Introduction
2. The Classification and Mechanism of Sensors
2.1. Spectroscopic Optical Fibre Sensors
2.2. Optical Fibre Grating Sensors
2.3. Evanescent Field Sensors
2.4. Plasmonic Sensors
3. Gas Species Selectivity
3.1. Methane
3.2. Carbon Dioxide
3.3. Nitrous Oxides
3.4. Water Vapour
3.5. Other Trace Gases
4. Comparison of Performances
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Butter, C.D.; Hocker, G.B. Fiber optics strain gauge. Appl. Opt. 1978, 17, 2867–2869. [Google Scholar] [CrossRef]
- Hocker, G.B. Fiber-optic sensing of pressure and temperature. Appl. Opt. 1979, 18, 1445–1448. [Google Scholar] [CrossRef]
- Culshaw, B.; Stewart, G.; Dong, F.; Tandy, C.; Moodie, D. Fibre optic techniques for remote spectroscopic methane detection—From concept to system realisation. Sens. Actuators B Chem. 1998, 51, 25–37. [Google Scholar] [CrossRef]
- Chandra, N.; Patra, P.K.; Bisht, J.S.; Ito, A.; Umezawa, T.; Saigusa, N.; Morimoto, S.; Aoki, S.; Janssens-Maenhout, G.; Fujita, R.; et al. Emissions from the oil and gas sectors, coal mining and ruminant farming drive methane growth over the past three decades. J. Meteorol. Soc. Japan. Ser. II 2021, 99, 309–337. [Google Scholar] [CrossRef]
- Moss, A.R.; Jouany, J.-P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. In Annales de Zootechnie; EDP Sciences: Les Ulis, France, 2000; Volume 49, pp. 231–253. [Google Scholar]
- Al-Sharrah, G.; Elkamel, A. Strategic Planning of the Petrochemical Industry; Inderscience Enterprises: Geneva, Switzerland, 2000. [Google Scholar]
- James, D.; Scott, S.M.; Ali, Z.; O’hare, W.T. Chemical sensors for electronic nose systems. Microchim. Acta 2005, 149, 1–17. [Google Scholar] [CrossRef]
- Zhang, J.; Qin, Z.; Zeng, D.; Xie, C. Metal-oxide-semiconductor based gas sensors: Screening, preparation, and integration. Phys. Chem. Chem. Phys. 2017, 19, 6313–6329. [Google Scholar] [CrossRef] [PubMed]
- Govardhan, K.; Grace, A.N. Metal/metal oxide doped semiconductor based metal oxide gas sensors—A review. Sens. Lett. 2016, 14, 741–750. [Google Scholar] [CrossRef]
- Charlton, C.; Temelkuran, B.; Dellemann, G.; Mizaikoff, B. Midinfrared sensors meet nanotechnology: Trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides. Appl. Phys. Lett. 2005, 86, 194102. [Google Scholar] [CrossRef]
- Ong, R.C.; Marriott, P.J. A review of basic concepts in comprehensive two-dimensional gas chromatography. J. Chromatogr. Sci. 2002, 40, 276–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pravallika, S. Gas chromatography: A mini review. Res. Rev. J. Pharm. Anal. 2016, 5, 2340–2347. [Google Scholar]
- Harren, F.J.; Cotti, G.; Oomens, J.; te Lintel Hekkert, S. Photoacoustic spectroscopy in trace gas monitoring. Encycl. Anal. Chem. 2000, 3, 2203–2226. [Google Scholar]
- Sigrist, M.W. Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary). Rev. Sci. Instrum. 2003, 74, 486–490. [Google Scholar] [CrossRef]
- Dumitras, D.C.; Dutu, D.C.; Matei, C.; Magureanu, A.M.; Petrus, M.; Popa, C. Laser photoacoustic spectroscopy: Principles, instrumentation, and characterization. J. Optoelectron. Adv. Mater. 2007, 9, 3655. [Google Scholar]
- Arshak, K.; Moore, E.; Lyons, G.M.; Harris, J.; Clifford, S. A review of gas sensors employed in electronic nose applications. Sens. Rev. 2004, 24, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Sberveglieri, G. Gas Sensors: Principles, Operation and Developments; Springer: Brescia, Italy, 2012. [Google Scholar]
- Kohl, D. Function and applications of gas sensors. J. Phys. D Appl. Phys. 2001, 34, R125. [Google Scholar] [CrossRef]
- Shi, J.; Xu, D.; Xu, W.; Wang, Y.; Yan, C.; Zhang, C.; Yan, D.; He, Y.; Tang, L.; Zhang, W.; et al. Humidity sensor based on Fabry–Perot interferometer and intracavity sensing of fiber laser. J. Lightwave Technol. 2017, 35, 4789–4795. [Google Scholar] [CrossRef]
- Zhang, M.; Lu, M.; Ge, C.; Cunningham, B.T. Plasmonic external cavity laser refractometric sensor. Opt. Express 2014, 22, 20347–20357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoo, Y.L.; Jin, W.; Shi, C.; Ho, H.L.; Wang, D.N.; Ruan, S.C. Design and modeling of a photonic crystal fiber gas sensor. Appl. Opt. 2003, 42, 3509–3515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, R.; Chen, Y.; Shui, L.; Xiao, L. Hollow-core photonic crystal fiber gas sensing. Sensors 2020, 20, 2996. [Google Scholar] [CrossRef]
- Li, J.; Yan, H.; Dang, H.; Meng, F. Structure design and application of hollow core microstructured optical fiber gas sensor: A review. Opt. Laser Technol. 2021, 135, 106658. [Google Scholar] [CrossRef]
- Oh, M.-K.; De, R.; Yim, S.-Y. Highly sensitive VOC gas sensor employing deep cooling of SERS film. J. Raman Spectrosc. 2018, 49, 800–809. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, J.; Liu, H.; Zheng, Z. Compact dual-fiber surface-enhanced Raman scattering sensor with monolayer gold nanoparticles self-assembled on optical fiber. Appl. Opt. 2018, 57, 7931–7937. [Google Scholar] [CrossRef]
- Stokes, D.L.; Vo-Dinh, T. Development of an integrated single-fiber SERS sensor. Sens. Actuators B Chem. 2000, 69, 28–36. [Google Scholar] [CrossRef]
- James, S.W.; Tatam, R.P. Optical fibre long-period grating sensors: Characteristics and application. Meas. Sci. Technol. 2003, 14, R49. [Google Scholar] [CrossRef] [Green Version]
- Allsop, T.; Webb, D.J.; Bennion, I. A comparison of the sensing characteristics of long period gratings written in three different types of fiber. Opt. Fiber Technol. 2003, 9, 210–223. [Google Scholar] [CrossRef]
- Rao, Y.-J. In-fibre Bragg grating sensors. Meas. Sci. Technol. 1997, 8, 355. [Google Scholar] [CrossRef]
- Sahota, J.; Gupta, K.N.; Dhawan, D. Fiber Bragg grating sensors for monitoring of physical parameters: A comprehensive review. Opt. Eng. 2020, 59, 060901. [Google Scholar] [CrossRef]
- Guo, T.; Liu, F.; Shao, L.-Y. Tilted fiber Bragg grating sensors. Yingyong Kexue Xuebao/J. Appl. Sci. 2018, 36, 75–103. [Google Scholar]
- Albert, J.; Shao, L.-Y.; Caucheteur, C. Tilted fiber Bragg grating sensors. Laser Photonics Rev. 2013, 7, 83–108. [Google Scholar] [CrossRef]
- Nazeri, K.; Ahmed, F.; Ahsani, V.; Joe, H.-E.; Bradley, C.; Toyserkani, E.; Jun, M.B. Hollow-core Photonic crystal fiber mach–zehnder interferometer for gas sensing. Sensors 2020, 20, 2807. [Google Scholar] [CrossRef]
- Tian, Z.; Yam, S.S.H.; Barnes, J.; Bock, W.; Greig, P.; Fraser, J.M.; Loock, H.-P.; Oleschuk, R.D. Refractive index sensing with Mach–Zehnder interferometer based on concatenating two single-mode fiber tapers. IEEE Photonics Technol. Lett. 2008, 20, 626–628. [Google Scholar] [CrossRef]
- El-Sherif, M.; Bansal, L.; Yuan, J. Fiber optic sensors for detection of toxic and biological threats. Sensors 2007, 7, 3100–3118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kieu, K.Q.; Mansuripur, M. Biconical fiber taper sensors. IEEE Photonics Technol. Lett. 2006, 18, 2239–2241. [Google Scholar] [CrossRef]
- Wang, K.; Scott, B.; Pfeiffenberger, N.; Pickrell, G. Random-hole optical fiber sensors and their sensing applications. Adv. Synth. Process. Appl. Nanostructures Ceram. Trans. 2012, 238, 129–134. [Google Scholar]
- Pickrell, G.R.; Smirnova, E. Novel structures in random hole optical fibers. In Proceedings of the SENSORS, 2005 IEEE, Irvine, CA, USA, 30 October–3 November 2005; IEEE: Piscataway, NJ, USA, 2005; p. 4. [Google Scholar]
- Sharma, A.K.; Jha, R.; Gupta, B.D. Fiber-optic sensors based on surface plasmon resonance: A comprehensive review. IEEE Sens. J. 2007, 7, 1118–1129. [Google Scholar] [CrossRef]
- Allsop, T.; Neal, R. A review: Evolution and diversity of optical fibre plasmonic sensors. Sensors 2019, 19, 4874. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Li, Z.; Huo, Y.; Jiang, S.; Jiang, M. High performance D-type plastic fiber SPR sensor based on hyperbolic metamaterial composed of Ag/MgF2. J. Mater. Chem. C 2021. [Google Scholar] [CrossRef]
- Lee, S.; Song, H.; Ahn, H.; Kim, S.; Choi, J.R.; Kim, K. Fiber-optic localized surface plasmon resonance sensors based on nanomaterials. Sensors 2021, 21, 819. [Google Scholar] [CrossRef]
- Prado, A.R.; Diaz, C.A.; Nunes, L.G.L.; Oliveira, J.P.; Guimaraes, M.C.; Leal-Junior, A.; Ribeiro, M.R.; Pontes, M.J. Surface plasmon resonance-based optical fiber sensors for H 2 S in situ detection. Plasmonics 2021, 16, 787–797. [Google Scholar] [CrossRef]
- Allsop, T.; Mou, C.; Neal, R.; Kundrát, V.; Wang, C.; Kalli, K.; Webb, D.; Liu, X.; Davey, P.; Culverhouse, P.; et al. Generation of a conjoint surface plasmon by an infrared nano-antenna array. Adv. Photonics Res. 2021, 2, 2000003. [Google Scholar] [CrossRef]
- Senthil, R.; Anand, U.; Krishnan, P. Hollow-core high-sensitive photonic crystal fiber for liquid-/gas-sensing applications. Appl. Phys. A 2021, 127, 1–8. [Google Scholar] [CrossRef]
- Jung, Y.; Lee, S.; Lee, B.H.; Oh, K. Ultracompact in-line broadband Mach-Zehnder interferometer using a composite leaky hollow-optical-fiber waveguide. Opt. Lett. 2008, 33, 2934–2936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Yang, M.; Cheng, J.; Dai, J.; Yang, M.; Wang, D.N. Femtosecond laser fabricated micro Mach-Zehnder interferometer with Pd film as sensing materials for hydrogen sensing. Opt. Lett. 2012, 37, 1940–1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wang, D.N.; Yang, M.; Hong, W.; Lu, P. Refractive index sensor based on a microhole in single-mode fiber created by the use of femtosecond laser micromachining. Opt. Lett. 2009, 34, 3328–3330. [Google Scholar] [CrossRef] [Green Version]
- Niklas, C.; Wackerbarth, H.; Ctistis, G. A short review of cavity-enhanced Raman spectroscopy for gas analysis. Sensors 2021, 21, 1698. [Google Scholar] [CrossRef]
- Brooks, W.S.; Partridge, M.; Davidson, I.A.; Warren, C.; Rushton, G.; Large, J.; Wharton, M.; Storey, J.; Wheeler, N.V.; Foster, M.J. Development of a gas-phase Raman instrument using a hollow core anti-resonant tubular fibre. J. Raman Spectrosc. 2021. [Google Scholar] [CrossRef]
- Wang, C.; Lut, H.O.H. Recent advances in spectroscopic gas sensing with micro/nano-structured optical fibers. Photonic Sens. 2021, 11, 141–157. [Google Scholar]
- Bennion, I.; Williams, J.A.R.; Zhang, L.; Sugden, K.; Doran, N.J. UV-written in-fibre Bragg gratings. Opt. Quantum Electron. 1996, 28, 93–135. [Google Scholar] [CrossRef]
- Williams, R.J.; Voigtländer, C.; Marshall, G.D.; Tünnermann, A.; Nolte, S.; Steel, M.J.; Withford, M.J. Point-by-point inscription of apodized fiber Bragg gratings. Opt. Lett. 2011, 36, 2988–2990. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Xu, B.; Xu, X.; Liao, C.; Wang, Y. Review of femtosecond-laser-inscribed fiber bragg gratings: Fabrication technologies and sensing applications. Photonic Sens. 2021, 11, 1–24. [Google Scholar] [CrossRef]
- Rego, G.; Marques, P.V.S.; Santos, J.L.; Salgado, H.M. Arc-induced long-period gratings. Fiber Integr. Opt. 2005, 24, 245–259. [Google Scholar] [CrossRef]
- Erdogan, T. Fiber grating spectra. J. Lightwave Technol. 1997, 15, 1277–1294. [Google Scholar] [CrossRef] [Green Version]
- Erdogan, T. Cladding-mode resonances in short-and long-period fiber grating filters. JOSA A 1997, 14, 1760–1773. [Google Scholar] [CrossRef]
- Maier, R.R.; Jones, B.J.; Barton, J.S.; McCulloch, S.; Allsop, T.; Jones, J.D.; Bennion, I. Fibre optics in palladium-based hydrogen sensing. J. Opt. A Pure Appl. Opt. 2007, 9, S45. [Google Scholar] [CrossRef]
- Villatoro, J.; Monzón-Hernández, D.; Mejía, E. Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors. Appl. Opt. 2003, 42, 2278–2283. [Google Scholar] [CrossRef]
- Homola, J.; Yee, S.S.; Gauglitz, G. Surface plasmon resonance sensors. Sens. Actuators B Chem. 1999, 54, 3–15. [Google Scholar] [CrossRef]
- Guo, T.; Liu, F.; Guan, B.-O.; Albert, J. Tilted fiber grating mechanical and biochemical sensors. Opt. Laser Technol. 2016, 78, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.S.; Erdogan, T. Fiber mode coupling in transmissive and reflective tilted fiber gratings. Appl. Opt. 2000, 39, 1394–1404. [Google Scholar] [CrossRef]
- Huang, X.; Li, X.; Yang, J.; Tao, C.; Guo, X.; Bao, H.; Yin, Y.; Chen, H.; Zhu, Y. An in-line Mach-Zehnder interferometer using thin-core fiber for ammonia gas sensing with high sensitivity. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Dikovska, A.O.; Atanasov, P.A.; Andreev, A.T.; Zafirova, B.S.; Karakoleva, E.I.; Stoyanchov, T.R. ZnO thin film on side polished optical fiber for gas sensing applications. Appl. Surf. Sci. 2007, 254, 1087–1090. [Google Scholar] [CrossRef]
- Ying, Y.; Si, G.Y.; Luan, F.J.; Xu, K.; Qi, Y.W.; Li, H.N. Recent research progress of optical fiber sensors based on D-shaped structure. Opt. Laser Technol. 2017, 90, 149–157. [Google Scholar] [CrossRef]
- Meng-wei, Z.H.O.U.; Yi-qing, Z.H.U.; Xiao-tian, Y.A.O. Theoretical and experimental analysis of fused biconical microfiber coupler. Acta Photonica Sin. 2020, 49, 506005. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, Y.; Tong, L. Micro-/nanofiber optics: Merging photonics and material science on nanoscale for advanced sensing technology. Iscience 2020, 23, 100810. [Google Scholar] [CrossRef] [Green Version]
- Gloge, D. Weakly guiding fibers Appl. Opt. 1971, 10, 2252–2258. [Google Scholar]
- Monerie, M. Propagation in doubly clad single-mode fibers IEEE Trans. Microw. Theory Tech. 1982, 30, 381–388. [Google Scholar] [CrossRef]
- Snyder, A.W.; Love, J.D. Optical Waveguide Theory; Chapman and Hall: London, UK, 1983. [Google Scholar]
- Love, J.D.; Henry, W.M.; Stewart, W.J.; Black, R.J.; Lacroix, S.; Gonthier, F. Tapered single-mode fibres and devices. Part 1: Adiabaticity criteria. IEE Proc. J. Optoelectron. 1986, 133, 377–384. [Google Scholar]
- Korposh, S.; James, S.W.; Lee, S.-W.; Tatam, R.P. Tapered optical fibre sensors: Current trends and future perspectives. Sensors 2019, 19, 2294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rego, G. Fibre optic devices produced by arc discharges. J. Opt. 2010, 12, 113002. [Google Scholar] [CrossRef]
- Available online: https://laser-21.com/fiber-fusion-splicers-and-processing-equipment/ (accessed on 11 August 2021).
- Available online: https://www.fiberbridge-photonics.com/products/fiber-component-machinery/fiber-taper-station (accessed on 11 August 2021).
- Musa, B.; Rozi, A.A.; Noor, A.S.M.; Ismail, A.; Mahdi, M.A. Effect of fiber profile parameters on the transmission properties of the tapered optical fibers. In Proceedings of the 2011 2nd International Conference on Photonics, Kota Kinabalu, Malaysia, 17–19 October 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 1–4. [Google Scholar]
- Kominsky, D.; Pickrell, G.; Stolen, R. Generation of random-hole optical fiber. Opt. Lett. 2003, 28, 1409–1411. [Google Scholar] [CrossRef] [PubMed]
- Raether, H. Surface plasmons on gratings. In Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer: Heidelberg, Germany, 1988; pp. 91–116. [Google Scholar]
- Homola, J. Surface Plasmon Resonance Based Sensors; Springer: Berlin, Germany, 2006; Volume 4. [Google Scholar]
- George, J. Preparation of Thin Films; CRC Press: Boca Raton, FL, USA, 1992. [Google Scholar]
- Davidse, P.D.; Maissel, L.I. Dielectric thin films through rf sputtering. J. Appl. Phys. 1966, 37, 574–579. [Google Scholar] [CrossRef]
- De Keijser, M.; Dormans, G.J.M. Chemical vapor deposition of electroceramic thin films. MRS Bull. 1996, 21, 37–43. [Google Scholar] [CrossRef]
- Chen, Y.; Ming, H. Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sens. 2012, 2, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Engstrom, D.; Porter, S.B.; Pacios, M.; Bhaskaran, H. Additive nanomanufacturing–A review. J. Mater. Res. 2014, 29, 1792–1816. [Google Scholar] [CrossRef] [Green Version]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Link, S.; El-Sayed, M.A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410–8426. [Google Scholar] [CrossRef]
- Jain, P.K.; Huang, X.; El-Sayed, I.H.; El-Sayed, M.A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41, 1578–1586. [Google Scholar] [CrossRef]
- Allsop, T.; Neal, R.; Davies, E.M.; Mou, C.; Bond, P.; Rehman, S.; Kalli, K.; Webb, D.J.; Calverhouse, P.; Bennion, I. Low refractive index gas sensing using a surface plasmon resonance fibre device. Meas. Sci. Technol. 2010, 21, 094029. [Google Scholar] [CrossRef]
- Kweku, D.W.; Bismark, O.; Maxwell, A.; Desmond, K.A.; Danso, K.B.; Oti-Mensah, E.A.; Quachie, A.T.; Adormaa, B.B. Greenhouse effect: Greenhouse gases and their impact on global warming. J. Sci. Res. Rep. 2017, 17, 1–9. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, F.; Duan, J.; Sun, X.; Fu, L.; Kurths, J. The maximum likelihood climate change for global warming under the influence of greenhouse effect and Lévy noise. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 013132. [Google Scholar] [CrossRef]
- Wigley, T.M.; Raper, S.C.B. Thermal expansion of sea water associated with global warming. Nature 1987, 330, 127–131. [Google Scholar] [CrossRef] [Green Version]
- Lashof, D.A.; Ahuja, D.R. Relative contributions of greenhouse gas emissions to global warming. Nature 1990, 344, 529–553. [Google Scholar] [CrossRef]
- Gomolka, G.; Stępniewski, G.; Pysz, D.; Buczyński, R.; Klimczak, M.; Nikodem, M. Methane sensing inside anti-resonant hollow-core fiber in the near-and mid-infrared spectral regions. In Proceedings of the SPIE OPTICS + OPTOELECTRONICS, Online Only, Czech Republic, 19–30 April 2021; International Society for Optics and Photonics: Bellingham, WA, USA, 2021; Volume 11773, p. 117730E. [Google Scholar]
- Ritari, T.; Tuominen, J.; Ludvigsen, H.; Petersen, J.C.; Sørensen, T.; Hansen, T.P.; Simonsen, H.R. Gas sensing using air-guiding photonic bandgap fibers. Opt. Express 2004, 12, 4080–4087. [Google Scholar] [CrossRef]
- Parry, J.P.; Griffiths, B.C.; Gayraud, N.; McNaghten, E.D.; Parkes, A.M.; MacPherson, W.N.; Hand, D.P. Towards practical gas sensing with micro-structured fibres. Meas. Sci. Technol. 2009, 20, 75301. [Google Scholar] [CrossRef]
- Ale, E.H.; Jamshidi, E. Kinetic study of zinc oxide reduction by methane. Chem. Eng. Res. Des. 2001, 79, 62–70. [Google Scholar]
- Parta, M.; Halder, A. Effect of initialization time on application potentiality of a ZnO thin film based LPG sensor. Mater. Res. 2009, 12, 329–332. [Google Scholar]
- Ghosh, S.; RoyChaudhuri, C.; Bhattacharya, R.; Saha, H.; Mukherjee, N. Palladium–silver-activated ZnO surface: Highly selective methane sensor at reasonably low operating temperature. ACS Appl. Mater. Interfaces 2014, 6, 3879–3887. [Google Scholar] [CrossRef]
- Allsop, T.; Kundrat, V.; Kalli, K.; Lee, G.B.; Neal, R.; Bond, P.; Shi, B.; Sullivan, J.; Culverhouse, P.; Webb, D.J. Methane detection scheme based upon the changing optical constants of a zinc oxide/platinum matrix created by a redox reaction and their effect upon surface plasmons. Sens. Actuators B Chem. 2018, 255, 843–853. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Ding, E.J.; Xu, S.C.; Li, Z.H.; Wang, X.X.; Song, F. Sensitization of an optical fiber methane sensor with graphene. Opt. Fiber Technol. 2017, 37, 26–29. [Google Scholar] [CrossRef]
- Canceill, J.; Lacombe, L.; Collet, A. Water-soluble cryptophane binding lipophilic guests in aqueous solution. J. Chem. Soc. Chem. Commun. 1987, 3, 219–221. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Zhao, Y.; Wang, Q. Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity. Sens. Actuators B Chem. 2015, 209, 431–437. [Google Scholar] [CrossRef]
- Liu, H.; Wang, H.; Chen, C.; Zhang, W.; Bai, B.; Chen, C.; Zhang, Y.; Shao, Q. High sensitive methane sensor based on twin-core photonic crystal fiber with compound film-coated side-holes. Opt. Quantum Electron. 2020, 52, 1–10. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, P.; Liu, S.; Chen, X. A reflective methane concentration sensor based on biconvex cone photonic crystal fiber. Optik 2021, 241, 166983. [Google Scholar] [CrossRef]
- Liu, H.; Wang, M.; Wang, Q.; Li, H.; Ding, Y.; Zhu, C. Simultaneous measurement of hydrogen and methane based on PCF-SPR structure with compound film-coated side-holes. Opt. Fiber Technol. 2018, 45, 1–7. [Google Scholar] [CrossRef]
- Mishra, S.; Sandeep, K.; Tripathi, N.; Choudhary, V.; Gupta, B.D. Surface plasmon resonance-based fiber optic methane gas sensor utilizing graphene-carbon nanotubes-poly (methyl methacrylate) hybrid nanocomposite. Plasmonics 2015, 10, 1147–1157. [Google Scholar] [CrossRef]
- Wei, W.; Nong, J.; Zhang, G.; Tang, L.; Jiang, X.; Chen, N.; Luo, S.; Lan, G.; Zhu, Y. Graphene-based long-period fiber grating surface plasmon resonance sensor for high-sensitivity gas sensing. Sensors 2017, 17, 2. [Google Scholar] [CrossRef]
- Tabassum, R.; Kant, R. Recent trends in surface plasmon resonance based fiber–optic gas sensors utilizing metal oxides and carbon nanomaterials as functional entities. Sens. Actuators B Chem. 2020, 310, 127813. [Google Scholar] [CrossRef]
- Yang, J.; Che, X.; Shen, R.; Wang, C.; Li, X.; Chen, W. High-sensitivity photonic crystal fiber long-period grating methane sensor with cryptophane-A-6Me absorbed on a PAA-CNTs/PAH nanofilm. Opt. Express 2017, 25, 20258–20267. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, Y.; Chen, C.; Bai, B.; Shao, Q.; Wang, H.; Zhang, W.; Chen, C.; Tang, S. Transverse-stress compensated methane sensor based on long-period grating in photonic crystal fiber. IEEE Access 2019, 7, 175522–175530. [Google Scholar] [CrossRef]
- Mulrooney, J.; Clifford, J.; Fitzpatrick, C.; Lewis, E. Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor. Sens. Actuators A Phys. 2007, 136, 104–110. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Y.; Adamu, A.I.; Dasa, M.K.; Antonio-Lopez, J.E.; Amezcua-Correa, R.; Markos, C. Mid-infrared photoacoustic gas monitoring driven by a gas-filled hollow-core fiber laser. Sci. Rep. 2021, 11, 1–8. [Google Scholar]
- Li, J.; Li, H.; Li, H.; Wang, Z. Detection of greenhouse gas CO2 by gas cell based on anti-resonance hollow-core fiber. In Proceedings of the First Optics Frontier Conference, Hangzhou, China, 24–26 April 2021; International Society for Optics and Photonics: Bellingham, WA, USA, 2021; Volume 11850, p. 118500P. [Google Scholar]
- Charpentier, F.; Bureau, B.; Troles, J.; Boussard-Plédel, C.; Michel-Le Pierres, K.; Smektala, F.; Adam, J.L. Infrared monitoring of underground CO2 storage using chalcogenide glass fibers. Opt. Mater. 2009, 31, 496–500. [Google Scholar] [CrossRef]
- Chu, C.-S.; Lo, Y.-L. Fiber-optic carbon dioxide sensor based on fluorinated xerogels doped with HPTS. Sens. Actuators B Chem. 2008, 129, 120–125. [Google Scholar] [CrossRef]
- Shanavas, S.; Ahamad, T.; Alshehri, S.M.; Acevedo, R.; Anbarasan, P.M. A facile microwave route for fabrication of NiO/rGO hybrid sensor with efficient CO2 and acetone gas sensing performance using clad modified fiber optic method. Optik 2021, 226, 165970. [Google Scholar] [CrossRef]
- Allsop, T.; Arif, R.; Neal, R.; Kalli, K.; Kundrát, V.; Rozhin, A.; Culverhouse, P.; Webb, D.J. Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures. Light: Sci. Appl. 2016, 5, e16036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Modi, A.; Koratkar, N.; Lass, E.; Wei, B.; Ajayan, P.M. Miniaturized gas ionization sensors using carbon nanotubes. Nature 2003, 424, 171–174. [Google Scholar] [CrossRef]
- Liu, W.-W.; Aziz, A.; Chai, S.-P.; Mohamed, A.R.; Tye, C.-T. Optimisation of reaction conditions for the synthesis of single-walled carbon nanotubes using response surface methodology. Can. J. Chem. Eng. 2012, 90, 489–505. [Google Scholar] [CrossRef]
- Lang, T.; Hirsch, T.; Fenzl, C.; Brandl, F.; Wolfbeis, O.S. Surface plasmon resonance sensor for dissolved and gaseous carbon dioxide. Anal. Chem. 2012, 84, 9085–9088. [Google Scholar] [CrossRef]
- Shivananju, B.N.; Yamdagni, S.; Fazuldeen, R.; Sarin Kumar, A.K.; Hegde, G.M.; Varma, M.M.; Asokan, S. CO2 sensing at room temperature using carbon nanotubes coated core fiber Bragg grating. Rev. Sci. Instrum. 2013, 84, 065002. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-J.; Lu, P.; Culp, J.T.; Ohodnicki, P.R. Metal–organic framework thin film coated optical fiber sensors: A novel waveguide-based chemical sensing platform. ACS Sens. 2018, 3, 386–394. [Google Scholar] [CrossRef]
- Chong, X.; Kim, K.-J.; Li, E.; Zhang, Y.; Ohodnicki, P.R.; Chang, C.H.; Wang, A.X. Near-infrared absorption gas sensing with metal-organic framework on optical fibers. Sens. Actuators B Chem. 2016, 232, 43–51. [Google Scholar] [CrossRef]
- Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 20 August 2021).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Solomon, S. Climate Change 2007—The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaworski, P.; Dudzik, G.; Sazio, P.J.; Belardi, W.; Krzempek, K. Laser-based nitric oxide detection at 5.26 µm using Antiresonant Hollow-Core Fiber. In Proceedings of the 2021 Optical Fiber Communications Conference and Exhibition (OFC), Washington, DC, USA, 6–11 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–3. [Google Scholar]
- Valiunas, J.K.; Tenuta, M.; Das, G. A gas cell based on hollow-core Photonic Crystal Fiber (PCF) and its application for the detection of Greenhouse Gas (GHG): Nitrous oxide (N2O). J. Sens. 2016, 2016, 7678315. [Google Scholar] [CrossRef] [Green Version]
- Nikodem, M.; Gomółka, G.; Klimczak, M.; Pysz, D.; Buczyński, R. Demonstration of mid-infrared gas sensing using an anti-resonant hollow core fiber and a quantum cascade laser. Opt. Express 2019, 27, 36350–36357. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.I.; Rocha-Santos, T.A.; Duarte, A.C. Optical fiber analyzer for in situ determination of nitrous oxide in workplace environments. J. Environ. Monit. 2009, 11, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Allsop, T.; Al Araimi, M.; Neal, R.; Wang, C.; Culverhouse, P.; Ania-Castañón, J.D.; Webb, D.J.; Davey, P.; Gilbert, J.M.; Rozhin, A. Detection of nitrous oxide using infrared optical plasmonics coupled with carbon nanotubes. Nanoscale Adv. 2020, 2, 4615–4626. [Google Scholar] [CrossRef]
- Wu, W.; Huang, J.; Ding, L.; Lin, H.; Yu, S.; Yuan, F.; Liang, B. A real-time and highly sensitive fiber optic biosensor based on the carbon quantum dots for nitric oxide detection. J. Photochem. Photobiol. A Chem. 2021, 405, 112963. [Google Scholar] [CrossRef]
- Ohira, S.-I.; Wanigasekara, E.; Rudkevich, D.M.; Dasgupta, P.K. Sensing parts per million levels of gaseous NO2 by a optical fiber transducer based on calix [4] arenes. Talanta 2009, 77, 1814–1820. [Google Scholar] [CrossRef]
- Sinha, A.; Harries, J.E. Water vapour and greenhouse trapping: The role of far infrared absorption. Geophys. Res. Lett. 1995, 22, 2147–2150. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). The Scientific basis. In Contribution of Working Group I to the Third Assessment Report of the, Intergovernmental Panel on Climate Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK, 2021; p. 881. [Google Scholar]
- Soden, B.J.; Wetherald, R.T.; Stenchikov, G.L.; Robock, A. Global cooling after the eruption of Mount Pinatubo: A test of climate feedback by water vapor. Science 2002, 296, 727–730. [Google Scholar] [CrossRef] [Green Version]
- Pielke, R.A., Sr.; Marland, G.; Betts, R.A.; Chase, T.N.; Eastman, J.L.; Niles, J.O.; Niyogi, D.d.S.; Running, S.W. The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2002, 360, 1705–1719. [Google Scholar] [CrossRef]
- Rind, D.; Chiou, E.W.; Chu, W.; Larsen, J.; Oltmans, S.; Lerner, J.; McCormkk, M.P.; McMaster, L. Positive water vapour feedback in climate models confirmed by satellite data. Nature 1991, 349, 500–503. [Google Scholar] [CrossRef]
- Boucher, O.; Myhre, G.; Myhre, A. Direct human influence of irrigation on atmospheric water vapour and climate. Clim. Dyn. 2004, 22, 597–603. [Google Scholar] [CrossRef]
- Plane, J.M.; Nien, C.-F. Differential optical absorption spectrometer for measuring atmospheric trace gases. Rev. Sci. Instrum. 1992, 63, 1867–1876. [Google Scholar] [CrossRef]
- Wei, Q.; Li, B.; Wang, J.; Zhao, B.; Yang, P. Impact of residual water vapor on the simultaneous measurements of trace CH4 and N2O in air with cavity ring-down spectroscopy. Atmosphere 2021, 12, 221. [Google Scholar] [CrossRef]
- Stark, A.; Correia, L.; Teichmann, M.; Salewski, S.; Larsen, C.; Baev, V.M.; Toschek, P.E. Intracavity absorption spectroscopy with thulium-doped fibre laser. Opt. Commun. 2003, 215, 113–123. [Google Scholar] [CrossRef]
- Alwis, L.; Sun, T.; Grattan, K.T.V. Optical fibre-based sensor technology for humidity and moisture measurement: Review of recent progress. Measurement 2013, 46, 4052–4074. [Google Scholar] [CrossRef]
- Love, C.; Nazemi, H.; El-Masri, E.; Ambrose, K.; Freund, M.S.; Emadi, A. A review on advanced sensing materials for agricultural gas sensors. Sensors 2021, 21, 3423. [Google Scholar] [CrossRef] [PubMed]
- Yeo, T.L.; Sun, T.; Grattan, K.T.V. Fibre-optic sensor technologies for humidity and moisture measurement. Sens. Actuators A Phys. 2008, 144, 280–295. [Google Scholar] [CrossRef]
- He, C.; Korposh, S.; Correia, R.; Liu, L.; Hayes-Gill, B.R.; Morgan, S.P. Optical fibre sensor for simultaneous temperature and relative humidity measurement: Towards absolute humidity evaluation. Sens. Actuators B Chem. 2021, 344, 130154. [Google Scholar] [CrossRef]
- Zhang, L.; Gu, F.; Lou, J.; Yin, X.; Tong, L. Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film. Opt. Express 2008, 16, 13349–13353. [Google Scholar] [CrossRef]
- Pissadakis, S.; Vainos, N.A.; Konstantaki, M. Thin film overlaid long period fibre grating sensors: Examples and prospects for advanced health monitoring applications. In Proceedings of the 2009 9th International Conference on Information Technology and Applications in Biomedicine, Larnaka, Cyprus, 4–7 November 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–4. [Google Scholar]
- Wang, Y.; Shen, C.; Lou, W.; Shentu, F. Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide. Sens. Actuators B Chem. 2016, 234, 503–509. [Google Scholar] [CrossRef]
- D’Amato, R.; Polimadei, A.; Terranova, G.; Caponero, M.A. Humidity sensing by chitosan-coated Fibre Bragg Gratings (FBG). Sensors 2021, 21, 3348. [Google Scholar] [CrossRef] [PubMed]
- Ohira, S.-I.; Miki, Y.; Matsuzaki, T.; Nakamura, N.; Sato, Y.-k.; Hirose, Y.; Toda, K. A fiber optic sensor with a metal organic framework as a sensing material for trace levels of water in industrial gases. Anal. Chim. Acta 2015, 886, 188–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, S.; Nawaz, A.; Ejaz, S.; Haider, S.T.A.; Alam, M.W.; Javed, H.U. Effects of hydrogen sulfide on postharvest physiology of fruits and vegetables: An overview. Sci. Hortic. 2019, 243, 290–299. [Google Scholar] [CrossRef]
- Usha, S.P.; Mishra, S.K.; Gupta, B.D. Fiber optic hydrogen sulfide gas sensors utilizing ZnO thin film/ZnO nanoparticles: A comparison of surface plasmon resonance and lossy mode resonance. Sens. Actuators B Chem. 2015, 218, 196–204. [Google Scholar] [CrossRef]
- Feng, X.; Feng, W.; Tao, C.; Deng, D.; Qin, X.; Chen, R. Hydrogen sulfide gas sensor based on graphene-coated tapered photonic crystal fiber interferometer. Sens. Actuators B Chem. 2017, 247, 540–545. [Google Scholar] [CrossRef]
- El-Shaheny, R.; Belal, F.; El-Shabrawy, Y.; El-Maghrabey, M. Nanostructures-based sensing strategies for hydrogen sulfide. Trends Environ. Anal. Chem. 2021, 31, e00133. [Google Scholar] [CrossRef]
- Balat, M. Potential importance of hydrogen as a future solution to environmental and transportation problems. Int. J. Hydrog. Energy 2008, 33, 4013–4029. [Google Scholar] [CrossRef]
- Farrukh, S.; Fan, X.; Mustafa, K.; Hussain, A.; Ayoub, M.; Younas, M. Hydrogen future: Toward industrial applications. In Nanotechnology and the Generation of Sustainable Hydrogen; Springer: Cham, Switzerland, 2021; pp. 105–109. [Google Scholar]
- Hübert, T.; Boon-Brett, L.; Black, G.; Banach, U. Hydrogen sensors—A review. Sens. Actuators B Chem. 2011, 157, 329–352. [Google Scholar] [CrossRef]
- Chen, K.; Yuan, D.; Zhao, Y. Review of optical hydrogen sensors based on metal hydrides: Recent developments and challenges. Opt. Laser Technol. 2021, 137, 106808. [Google Scholar] [CrossRef]
- Zhang, Y.-N.; Peng, H.; Qian, X.; Zhang, Y.; An, G.; Zhao, Y. Recent advancements in optical fiber hydrogen sensors. Sens. Actuators B Chem. 2017, 244, 393–416. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.F.; Coelho, L.; Frazão, O.; Santos, J.L.; Malcata, F.X. A review of palladium-based fiber-optic sensors for molecular hydrogen detection. IEEE Sens. J. 2011, 12, 93–102. [Google Scholar] [CrossRef]
- Avila, J.I.; Matelon, R.J.; Trabol, R.; Favre, M.; Lederman, D.; Volkmann, U.G.; Cabrera, A.L. Optical properties of Pd thin films exposed to hydrogen studied by transmittance and reflectance spectroscopy. J. Appl. Phys. 2010, 107, 023504. [Google Scholar] [CrossRef]
- Noh, J.-S.; Lee, J.M.; Lee, W. Low-dimensional palladium nanostructures for fast and reliable hydrogen gas detection. Sensors 2011, 11, 825–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chellappa, A.S.; Fischer, C.M.; Thomson, W.J. Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications. Appl. Catal. A Gen. 2002, 227, 231–240. [Google Scholar] [CrossRef]
- Gunanathan, C.; Milstein, D. Selective synthesis of primary amines directly from alcohols and ammonia. Angew. Chem. 2008, 120, 8789–8792. [Google Scholar] [CrossRef]
- Modak, J.M. Haber process for ammonia synthesis. Resonance 2002, 7, 69–77. [Google Scholar] [CrossRef]
- Fangmeier, A.; Hadwiger-Fangmeier, A.; Van der Eerden, L.; Jäger, H.-J. Effects of atmospheric ammonia on vegetation—A review. Environ. Pollut. 1994, 86, 43–82. [Google Scholar] [CrossRef]
- Liu, L.; Tang, Z.; He, C.; Korposh, S.; Lou, S.; Morgan, S.P. Chemically functionalised suspended-core fibre for ammonia gas detection. J. Lightwave Technol. 2021, 39, 5197–5205. [Google Scholar] [CrossRef]
- Navaneethan, M.; Patil, V.L.; Ponnusamy, S.; Muthamizhchelvan, C.; Kawasaki, S.; Patil, P.S.; Hayakawa, Y. Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature. Sens. Actuators B Chem. 2018, 255, 672–683. [Google Scholar]
- Devendiran, S.; Sastikumar, D. Fiber optic gas sensor based on light detection from the samarium oxide clad modified region. Opt. Fiber Technol. 2018, 46, 215–220. [Google Scholar] [CrossRef]
- Xu, B.; Huang, J.; Ding, L.; Zhang, H.; Zhanga, H. A sensitive ammonia sensor using long period fiber grating coated with graphene oxide/cellulose acetate. IEEE Sens. J. 2021, 21, 16691–16700. [Google Scholar] [CrossRef]
- Girei, S.H.; Alkhabet, M.M.; Kamil, Y.M.; Lim, H.N.; Mahdi, M.A.; Yaacob, M.H. Wavelength dependent graphene oxide-based optical microfiber sensor for ammonia gas. Sensors 2021, 21, 556. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Wu, Y.; Hua, Z.; Lu, N.; Sun, W.; Zhang, J.; Fan, S. Humidity compensation based on power-law response for MOS sensors to VOCs. Sens. Actuators B: Chem. 2021, 334, 129601. [Google Scholar] [CrossRef]
- Tharwat, A. Independent component analysis: An introduction. Appl. Comput. Inform. 2020, 17, 222–249. [Google Scholar] [CrossRef]
- Sudheer, V.R.; Kumar, S.S.; Sankararaman, S. Ultrahigh sensitivity surface plasmon resonance–Based fiber-optic sensors using metal-graphene layers with Ti3 C2Tx MXene overlayers. Plasmonics 2020, 15, 457–466. [Google Scholar] [CrossRef]
- Shi, B.; Sun, Y.; Zheng, W.; Zhu, N.; Zhang, Y.-N. Highly-sensitive ethanol gas sensor based on poly dimethylsiloxane coated micro-nano fiber. In Proceedings of the 2020 Chinese Control and Decision Conference (CCDC), Hefei, China, 22–24 August 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 4959–4962. [Google Scholar]
- Consales, M.; Crescitelli, A.; Penza, M.; Aversa, P.; Veneri, P.D.; Giordano, M.; Cusano, A. SWCNT nano-composite optical sensors for VOC and gas trace detection. Sens. Actuators B Chem. 2009, 138, 351–361. [Google Scholar] [CrossRef]
- Elosua, C.; Matias, I.R.; Bariain, C.; Arregui, F.J. Volatile organic compound optical fiber sensors: A review. Sensors 2006, 6, 1440–1465. [Google Scholar] [CrossRef] [Green Version]
- Pawar, D.; Kale, S.N. A review on nanomaterial-modified optical fiber sensors for gases, vapors and ions. Microchim. Acta 2019, 186, 1–34. [Google Scholar]
- Liu, X.; Cheng, S.; Liu, H.; Hu, S.; Zhang, D.; Ning, H. A survey on gas sensing technology. Sensors 2012, 12, 9635–9665. [Google Scholar] [CrossRef] [Green Version]
- Pati, S.; Maity, A.; Banerji, P.; Majumder, S.B. Qualitative and quantitative differentiation of gases using ZnO thin film gas sensors and pattern recognition analysis. Analyst 2014, 139, 1796–1800. [Google Scholar] [CrossRef]
- Fine, G.; Leon, F.; Cavanagh, M.; Afonja, A.; Binions, R. Metal oxide semi-conductor gas sensors in environmental monitoring. Sensors 2010, 10, 5469–5502. [Google Scholar] [CrossRef] [Green Version]
- Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B 2018, 229, 206–217. [Google Scholar] [CrossRef]
- Aldhafeeri, T.; Tran, M.-K.; Vrolyk, R.; Pope, M.; Fowler, M. A review of methane gas detection sensors: Recent developments and future perspectives. Inventions 2020, 5, 28. [Google Scholar] [CrossRef]
- NOAA ESRL Data. Available online: ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_mm_mlo.txt (accessed on 21 August 2021).
- Cameron, T.; Kevin, A.; Jacob, I.D.; Chitra, M. Synthesis and analysis of SnS2 and its SO2 gas sensing application via modified-cladding fibre optic setup. Mater. Technol. 2021, 1–22. [Google Scholar] [CrossRef]
- Katagiri, T.; Shibayama, K.; Iida, T.; Matsuura, Y. Infrared hollow optical fiber probe for localized carbon dioxide measurement in respiratory tracts. Sensors 2018, 18, 995. [Google Scholar] [CrossRef] [Green Version]
- Hromadka, J.; Tokay, B.; Correia, R.; Morgan, S.P.; Korposh, S. Carbon dioxide measurements using long period grating optical fibre sensor coated with metal organic framework HKUST-1. Sens. Actuators B: Chem. 2018, 255, 2483–2494. [Google Scholar] [CrossRef]
- Yao, C.; Gao, S.; Wang, Y.; Jin, W.; Ren, W. Heterodyne interferometric photothermal spectroscopy for gas detection in a hollow-core fiber. Sens. Actuators B: Chem. 2021, 346, 130528. [Google Scholar] [CrossRef]
- Zhao, Z.; Duan, Y. A low cost fiber-optic humidity sensor based on silica sol–gel film. Sens. Actuators B: Chem. 2011, 160, 1340–1345. [Google Scholar] [CrossRef]
- Estella, J.; de Vicente, P.; Echeverría, J.C.; Garrido, J.J. A fibre-optic humidity sensor based on a porous silica xerogel film as the sensing element. Sens. Actuators B: Chem. 2010, 149, 122–128. [Google Scholar] [CrossRef]
- Wang, N.; Tian, W.; Zhang, H.; Yu, X.; Yin, X.; Du, Y.; Li, D. An easily fabricated high performance Fabry-Perot optical fiber humidity sensor filled with graphene quantum dots. Sensors 2021, 21, 806. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Surface plasmon resonance humidity sensor based on twisted long period fiber grating coated with tungsten disulfide film. Optik 2021, 236, 166616. [Google Scholar] [CrossRef]
- Shao, M.; Sun, H.; Liang, J.; Han, L.; Feng, D. In-fiber Michelson interferometer in photonic crystal fiber for humidity measurement. IEEE Sens. J. 2020, 21, 1561–1567. [Google Scholar] [CrossRef]
- Malook, K.; Khan, H.; Ali, M. Investigation of room temperature humidity sensing performance of mesoporous CuO particles. Mater. Sci. Semicond. Process. 2020, 113, 105021. [Google Scholar] [CrossRef]
- Zhao, Q.; Yuan, Z.; Duan, Z.; Jiang, Y.; Li, X.; Li, Z.; Tai, H. An ingenious strategy for improving humidity sensing properties of multi-walled carbon nanotubes via poly-L-lysine modification. Sens. Actuators B Chem. 2019, 289, 182–185. [Google Scholar] [CrossRef]
- Mathar, R.J. Refractive index of humid air in the infrared: Model fits. J. Opt. A Pure Appl. Opt. 2007, 9, 470. [Google Scholar] [CrossRef]
Material for Selective Sensing | Interrogation and Mechanism | Sensitivity | L. O. D. | Range | Comments |
---|---|---|---|---|---|
nm/% | % | % | |||
─ | Spectroscopy, ~1.6 and ~3.2 μm, cavity and PCF | ─ | ~0.007 | 0–0.1 | [93] regeneration, response time 10 s |
Pt/ZnO | OSA, SPR, ~1420 nm | 0.01 | ~0.15 | 0–100 | [99] regeneration, response time 1 s |
SnO2/Graphene | OSA, absorption, ~1570 nm | ─ | ~1.0 | 0–55 | [100], no more Info |
Crytophane E | OSA, absorption, cavity ~1550 nm | −1.6 | ~0.06 | 0–5 | [102], response time 5 min |
Crytophane E | OSA, absorption, PCF cavity ~1350 nm | 4.6 | ~0.04 | 0–3 | [103] regeneration, response time 60 s and 180 s |
Crytophane E | OSA, absorption, PCF ZM ~1550 nm | 1.272 | ~0.02 | 0–5 | [104], no more Info |
Crytophane A | OSA, absorption, PCF cavity ~1350 nm | −1.99 | ~0.2 | 0–3.5 | [105], no more Info |
Graphene+CNTs and PMMA | OSA, absorption, SPR ~450 nm and ~720 nm | 1000 | ~0.0007 | 0–0.01 | [106], no more Info |
Graphene+Ag | OSA, index, SPR and LPG ~1538 nm | 0.34 | ~0.1 | 0–3.5 | [107] regeneration, response time 50 s and 160 s |
Crytophane A | OSA, index, LPG ~1545 nm | 2.5 | ~0.2 | 0–3.5 | [109] regeneration, response time 60 s and 180 s |
Crytophane A | OSA, index, LPG ~1550 nm | 6.39 | ~0.015 | 0–3.5 | [110], no more Info |
Material for Selective Sensing | Interrogation and Mechanism | Sensitivity | L. O. D. | Range | Comments |
---|---|---|---|---|---|
/% | % | % | |||
─ | Spectroscopy, ~3.95 and ~4.23 μm, cavity, chalcogenide fibre | ─ | ~0.02 | 0–1.9 | [111] regeneration, response time 5 s |
─ | spectrometer, absorption, PCF cavity ~1530 nm | ─ | ~0.0005 | 0–0.05 | [112] regeneration, response time 50 s |
─ | spectrometer, absorption, cavity ~2 μm | ─ | ~0.0006 | 0–0.1 | [113], no more Info |
─ | FTIR, absorption, chalcogenide fibre cavity ~4.2 μm | 1 au | ~0.5 | 0–100 | [114] regeneration, response time 1 min |
HPTS (8-Hydroxypyrene-1,3,6-trisulfonic acid trisodium salt hydrate) and Xerogel | absorption, ~396 nm and ~460 nm | 0.3 dB | ~0.03 | 0–30 | [115] regeneration, response time 50 s and Regen 100 s |
Nickel oxide and reduced graphene oxide | spectrometer, absorption, ~650 nm and 771 nm | 1400 au | ~0.0005 | 0–0.05 | [116] regeneration, response time 16 s and Regen 22 s |
Carbon nanotubes | OSA, absorption, LSP ~1432 nm and ~1544 nm | 0.04 nm | ~0.05 | 0–100 | [117] regeneration, response time 10 s and Regen 12 s |
TB-PAM(tributylpentan-amidine) and ethyl cellulose | OSA, absorption, Au and polymer matrix ~650 nm | 400 au | ~0.01 | 0–0.03 | [120] regeneration, response time 100 s |
Carbon nanotubes and Polyallylamine | OSA, FBG ~1550 nm | 0.1 nm | ~0.01 | 0.1–0.4 | [121], no more Info |
Metal-Organic Framework Cobalt Zeolitic imidazolate | Spectrometer ~200 nm to ~650 nm absorption | 1.1 au | ~0.5 | 0–100 | [122] regeneration, response time 20 s and Regen 80 s |
Metal-Organic Framework Copper benzne 1,3,5-tricarboxylate | OSA ~1570 nm absorption | 0.03 au | ~0.002 | 0–100 | [123] regeneration, response time 10 s and Regen 50 s |
SnS2 (Tin disulphide) | OSA ~445 nm emission | 8 nm | ~0.008 | 0–0.06 | [187], no more Info |
─ | Spectroscopic hollow optical fibre, cavity ~4.28 μm and 4.25 μm | ─ | ~0.02 | 0–4 | [188], no more Info |
Metal-Organic Framework HKUST-1(benzene-1,3,5-tricarboxylate) | OSA ~700 nm LPG | 25 nm | ~0.04 | 0.05–4 | [189] regeneration, response time 60 s and Regen 5 min |
Material for Selective Sensing | Interrogation and Mechanism | Sensitivity | L. O. D. | Range | Comments |
---|---|---|---|---|---|
/% | % | % | |||
─ | Spectroscopy, ~5.26 μm, cavity, hallow optical fibre | −0.634 v | ~0.000014 | 0–0.0001 | [128] regeneration, response time 70 s and Regen ~100 s |
─ | Spectroscopy absorption, ~1552 nm, cavity, | 3000 dB | ~0.00005 | 0–0.001 | [129] regeneration, response time 36 s |
─ | Spectroscopy, ~4.53 μm, cavity, hallow optical fibre | 5 × 105 au | ~0.00001 | 0–0.0003 | [130] regeneration, response time 23 s and Regen 30 s |
Divinylbenzne and siloxone ploymer | spectrometer, SPR ~1550 nm | 5 × 107 dB | ~10−7 | 0–1.8 × 10−6 | [131] regeneration, response time 5 s and Regen 360 s |
Carbon nanotubes, Poly ethyleneimine, Au | OSA, absorption, LSP ~1450 nm | 0.05 nm | ~0.0109 | 0–100 | [132] regeneration, response time 19 s and Regen 400 s |
Carbon qunatum dots and o-phenylenediamine | spectroscopic, flourescence ~400 nm | 105 au | ~0.00003 | 0–0.01 | [133], no more Info |
calix [4] arenes and O-hexyl | spectrophotometer, absorption ~582 nm | 185 au | ~0.0005 | 0.0007–0.0015 | [134] regeneration, response time 2 min and Regen 20 min |
─ | Spectroscopy, ~1500 nm, cavity, hallow optical fibre | 82 μV | ~0.001 | 0–2.5 | [190] regeneration, response time 60 s and Regen 6 min |
Material for Selective Sensing | Interrogation and Mechanism | Sensitivity | L. O. D. | Range | Comments |
---|---|---|---|---|---|
/% | % | % | |||
─ | Spectroscopic, ~1.9 μm, cavity | ─ | ~10−5 | 0–0.1 | [143] response time 0.5 ms |
Poly allylamine hydrochloride and silica nano particles | Spectrometer reflective spectrum, ~500 nm and ~650 nm | 0.07 nm | 0.43 | ~50–95 | [147] regeneration, response time 3.1 s and Regen 57.3 s |
Gelatin | OSA, tranmission spectra, Taper ~1550 nm | −0.14 dB | ~0.2 | ~9–94 | [148] regeneration, response time 70 ms |
Cabolt chloride ethylene oxide | OSA, LPG ~1550 nm | ~−0.23 nm and ~0.33 nm | ~0.1 | ~50–77 and 77–95 | [149] regeneration, response time 20 s |
Graphene oxide | OSA, Transmission spectra, Mach-Zhender; core-offset ~1550 nm | 0.349 dB | ~0.2 | 30–77 | [150], no more Info |
Chitosan (polysaccharide) | spectrometer reflective spectrum, FBG, 1541 nm | 0.107 nm | ~0.1 | 30–77 | [151] regeneration, response time ~2 s and Regen 60 s |
Metal Organic Framework; Copper benzene 1,3,5 tricarboxylate | spectrometer, absorption ~490 nm | 0.15 au | ~0.0025 | 0–1 | [152] regeneration, response time 23 s and Regen 5 min |
Sol-Gel doped with Methylene Blue | Spectroscopy, absorption ~540 nm | 0.087 dB | ~0.062 | 0–70 | [191] regeneration, response time 20 s and Regen 3 min |
Silica Xerogel, gelatin and tetraethylortho silicate | spectrometer reflective spectrum, 630–670 nm | ~0.08 | ~0.3 | 4–100 | [192] regeneration, response time 10 s and Regen 2 min |
Graphene quantum dots | Scanning laser, transmission, cavity, 1550 nm | 0.567 nm | ~0.05 | ~11–85 | [193] regeneration, response time 5.5 s and Regen 8.5 s |
Tungsten dissulphide and Au | OSA transmission spectra, LPG and SPR, ~1535 nm | 0.037 nm | ~0.2 | 30–80 | [194] regeneration, response time 0.3 s and Regen 1.5 s |
─ | OSA Reflective spectra, PCF/Taper Cavity ~1550 nm | −0.166 dB | ~0.1 | 30–90 | [195] regeneration, response time 0.4 s and Regen 0.2 s |
Target Gas and Material for Selective Sensing | Gas Target Response | Non-Target Response | μp | Comments |
---|---|---|---|---|
Methane Pd-Pt/ZnO (Spectroscopic) | ~+80% | ~+15% | 0.158 | REF [98] |
Methane Pt/ZnO (SPR) | ~+0.4 nm | ~−0.02 nm | 0.048 | REF [99] |
Methane graphene-carbon nanotubes-poly (methyl methacrylate (SPR) | ~+30 nm | ~+9.0 nm | 0.231 | REF [106] |
Nitrous Oxide Pt/ZnO (SPR) | ~+5.7 nm | ~−4.0 nm | 0.412 | REF [132] |
Nitrous Oxide carbon quantum dots (Spectroscopic) | ~+0.34% | ~+0.2% | 0.370 | REF [133] |
Carbon Dioxide NiO/Reduced Graphene Oxide (Spectroscopic) | ~+82% | ~+41% | 0.333 | REF [116] |
Carbon Dioxide carbon nanotubes (LSP) | ~+4 nm | ~+0.7 nm | 0.149 | REF [117] |
Carbon Dioxide MOF (Absorption Spectroscopy) | ~+41% | ~+3% | 0.068 | REF [122] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allsop, T.; Neal, R. A Review: Application and Implementation of Optic Fibre Sensors for Gas Detection. Sensors 2021, 21, 6755. https://doi.org/10.3390/s21206755
Allsop T, Neal R. A Review: Application and Implementation of Optic Fibre Sensors for Gas Detection. Sensors. 2021; 21(20):6755. https://doi.org/10.3390/s21206755
Chicago/Turabian StyleAllsop, Thomas, and Ronald Neal. 2021. "A Review: Application and Implementation of Optic Fibre Sensors for Gas Detection" Sensors 21, no. 20: 6755. https://doi.org/10.3390/s21206755
APA StyleAllsop, T., & Neal, R. (2021). A Review: Application and Implementation of Optic Fibre Sensors for Gas Detection. Sensors, 21(20), 6755. https://doi.org/10.3390/s21206755