Multi-Classification of Complex Microseismic Waveforms Using Convolutional Neural Network: A Case Study in Tunnel Engineering
Abstract
:1. Introduction
2. Method and Data Preparation
3. Network Architecture and Training
4. Results
4.1. Model Evaluation
4.2. Application and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, N.W.; Tang, C.A.; Li, L.C.; Zhou, Z.; Sha, C.; Liang, Z.Z.; Yang, J.Y. Microseismic monitoring and stability analysis of the left bank slope in Jinping first stage hydropower station in southwestern China. Int. J. Rock Mech. Min. 2011, 48, 950–963. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, T.H.; Zhang, P.H.; Zhou, J.R.; Yu, Q.L.; Deng, W.X. The analysis of rock damage process based on the microseismic monitoring and numerical simulations. Tunn. Undergr. Space Technol. 2017, 49, 1–17. [Google Scholar] [CrossRef]
- Ma, C.C.; Li, T.B.; Zhang, H.; Wang, J.F. An evaluation and early warning method for rockburst based on EMS microseismic source parameters. Rock Soil Mech. 2018, 39, 765–774. (In Chinese) [Google Scholar]
- Xu, N.W.; Wu, J.Y.; Dai, F.; Fan, Y.L.; Li, T.; Li, B. Comprehensive evaluation of the stability of the left-bank slope at the Baihetan hydropower station in southwest China. Bull. Eng. Geol. Environ. 2018, 77, 1567–1588. [Google Scholar] [CrossRef]
- Feng, G.L.; Feng, X.T.; Chen, B.R.; Xiao, Y.X.; Zhao, Z.N. Effects of structural planes on the microseismicity associated with rockburst development processes in deep tunnels of the Jinping-II Hydropower Station, China. Tunn. Undergr. Space Technol. 2019, 84, 273–280. [Google Scholar] [CrossRef]
- Feng, L.; Pazzi, V.; Intrieri, E.; Gracchi, T.; Gigli, G. Rockfall seismic features analysis based on in situ tests: Frequency, amplitude, and duration. J. Mt. Sci.-Engl. 2019, 16, 955–970. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, C.C.; Li, T.B. Quantitative Evaluation of the “Non-Enclosed” Microseismic Array: A Case Study in a Deeply Buried Twin-Tube Tunnel. Energies 2019, 12, 2006. [Google Scholar] [CrossRef] [Green Version]
- Feng, G.L.; Lin, M.Q.; Yu, Y.; Fu, Y. A Microseismicity-Based Method of Rockburst Intensity Warning in Deep Tunnels in the Initial Period of Microseismic Monitoring. Energies 2020, 13, 2698. [Google Scholar] [CrossRef]
- Zhang, Z.; Arosio, D.; Hojat, A.; Zanzi, L. Tomographic experiments for defining the 3D velocity model of an unstable rock slope to support microseismic event interpretation. Geosciences 2020, 10, 327. [Google Scholar] [CrossRef]
- Allen, R.V. Automatic earthquake recognition and timing from single trace. Bull. Seismol. Soc. Am. 1978, 68, 1521–1532. [Google Scholar] [CrossRef]
- Withers, M.; Aster, R.; Young, C.; Beiriger, J.; Trujillo, J. A Comparison of select trigger algorithms for automated global seismic phase and event detection. Bull. Seismol. Soc. Am. 1998, 88, 95–106. [Google Scholar] [CrossRef]
- Trnkoczy, A. Understanding and Parameter Settings of STA/LTA Trigger Algorithm. In New Manual of Seismological Observatory Practice 2 (NMSOP-2); Deutsches GeoForschungsZentrum GFZ: Potsdam, Germany, 2012. [Google Scholar]
- Yoon, C.E.; O’Reilly, O.; Bergen, K.J.; Beroza, G.C. Earthquake detection through computationally efficient similarity search. Sci. Adv. 2015, 1, e1501057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skoumal, R.J.; Brudzinski, M.R.; Currie, B.S.; Levy, J. Optimizing multi-station earthquake template matching through re-examination of the Youngstown, Ohio, sequence. Earth. Planet. Sci. Lett. 2014, 405, 274–280. [Google Scholar] [CrossRef] [Green Version]
- Meier, M.A.; Ross, Z.E.; Ramachandran, A.; Balakrishna, A.; Nair, S.; Kundzica, P.; Li, Z.F.; Andrews, J.; Hauksson, E.; Yue, Y.S. Reliable real-time seismic signal/noise discrimination with machine learning. J. Geophys. Res.-Solid Earth 2018, 124, 788–800. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Ma, C.C.; Pazzi, V.; Zou, Y.L.; Casagli, N. Microseismic Signal Denoising and Separation Based on Fully Convolutional Encoder–Decoder Network. Appl. Sci. 2020, 10, 6621. [Google Scholar] [CrossRef]
- Giudicepietro, F.; Esposito, A.M.; Ricciolino, P. Fast discrimination of local earthquakes using a neural approach. Seismol. Res. Lett. 2017, 88, 1089–1096. [Google Scholar] [CrossRef]
- Lin, B.; Wei, X.; Zhao, J.J.; Zhao, H. Automatic classification of multi-channel microseismic waveform based on DCNN-SPP. J. Appl. Geophys. 2018, 159, 446–452. [Google Scholar] [CrossRef]
- Xin, B.A.; Chao, Z.B.; Yao, H.C.; Zhao, X.G.; Sun, Y.J.; Ma, Y.L. Explainable time–frequency convolutional neural network for microseismic waveform classification. Inform. Sci. 2021, 546, 883–896. [Google Scholar] [CrossRef]
- Liang, W.; Sari, Y.A.; Zhao, G.; Mckinnon, S.D.; Wu, H. Probability Estimates of Short-Term Rockburst Risk with Ensemble Classifiers. Rock Mech. Rock Eng. 2021, 54, 1799–1814. [Google Scholar] [CrossRef]
- Saad, O.M.; Chen, Y. Automatic waveform-based source-location imaging using deep learning extracted microseismic signals. Geophysics 2020, 85, KS171–KS183. [Google Scholar] [CrossRef]
- Tang, S.B.; Wang, J.X.; Tang, C.A. Identification of Microseismic Events in Rock Engineering by a Convolutional Neural Network Combined with an Attention Mechanism. Rock Mech. Rock Eng. 2020, 54, 47–69. [Google Scholar] [CrossRef]
- Griffin, D.W.; Lim, J.S. Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 1984, 32, 236–243. [Google Scholar] [CrossRef]
- Wongsaroj, W.; Hamdani, A.; Thong-Un, N.; Takahashi, H.; Kikura, H. Extended Short-Time Fourier Transform for Ultrasonic Velocity Profiler on Two-Phase Bubbly Flow Using a Single Resonant Frequency. Appl. Sci. 2018, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Ko, D.K.; Lim, S.C.; Kim, H.S. Structural vibration-based classification and prediction of delamination in smart composite laminates using deep learning neural network. Compos. Part B Eng. 2019, 161, 586–594. [Google Scholar] [CrossRef]
- Pan, X.; Cheng, Z.F.; Zheng, Z.; Zhang, Y.H. Sparse Bayesian learning beamforming combined with short-time Fourier transform for fault detection of wind turbine blades. J. Acoust. Soc. Am. 2019, 145, 1802. [Google Scholar] [CrossRef]
- Zhu, W.Q.; Mousavi, S.M.; Beroza, G.C. Seismic Signal Denoising and Decomposition Using Deep Neural Networks. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9476–9488. [Google Scholar] [CrossRef] [Green Version]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA; 2011; pp. 315–323. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. Comput. Sci. 2015. Available online: https://www.semanticscholar.org/paper/Adam%3A-A-Method-for-Stochastic-Optimization-Kingma-Ba/a6cb366736791bcccc5c8639de5a8f9636bf87e8 (accessed on 24 July 2021).
- Sun, H.M.; Jia, R.S.; Du, Q.Q.; Fu, Y. Cross-correlation analysis and time delay estimation of a homologous micro-seismic signal based on the Hilbert–Huang transform. Comput. Geosci.-UK 2016, 91, 98–104. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Zhu, W.Q.; Sheng, Y.X.; Beroza, G.C. Cred: A deep residual network of convolutional and recurrent units for earthquake signal detection. Sci. Rep.-UK 2019, 9, 10267. [Google Scholar] [CrossRef]
- Hanks, T.C.; Kanamori, H. A moment magnitude scale. J. Geophys. Res.-Atmos. 1979, 84, 2348–2350. [Google Scholar] [CrossRef]
Layer | Output | Activation Function | Kernel/Stride | Parameters |
---|---|---|---|---|
Conv1 | 129 × 236 × 32 | ReLU | 3 × 3/1 × 1 | 608 |
Conv2 | 129 × 236 × 32 | ReLU | 3 × 3/1 × 1 | 9248 |
Maxp1 | 64 × 118 × 32 | 2 × 2/1 × 1 | 0 | |
Conv3 | 64 × 118 × 64 | ReLU | 3 × 3/1 × 1 | 18,496 |
Conv4 | 64 × 118 × 64 | ReLU | 3 × 3/1 × 1 | 36,928 |
Maxp2 | 32 × 59 × 64 | 2 × 2/1 × 1 | 0 | |
Conv5 | 32 × 59 × 128 | ReLU | 3 × 3/1 × 1 | 73,856 |
Conv6 | 32 × 59 × 128 | ReLU | 3 × 3/1 × 1 | 147,584 |
Maxp3 | 16 × 29 × 128 | 2 × 2/1 × 1 | 0 | |
Conv7 | 16 × 29 × 256 | ReLU | 3 × 3/1 × 1 | 295,168 |
Conv8 | 16 × 29 × 256 | ReLU | 3 × 3/1 × 1 | 590,080 |
Maxp4 | 8 × 17 × 256 | 2 × 2/1 × 1 | 0 | |
Conv9 | 8 × 17 × 512 | ReLU | 3 × 3/1 × 1 | 1,180,160 |
Conv10 | 8 × 17 × 512 | ReLU | 3 × 3/1 × 1 | 2,359,808 |
Maxp5 | 4 × 8 × 512 | 2 × 2/1 × 1 | 0 | |
Flatten | 0 | |||
FC1 | 256 | ReLU | 1,048,832 | |
FC2 | 128 | ReLU | 32,896 | |
FC3 | 3 | Softmax | 387 |
Model | Parameters (×106) | GFLOPs | Val_Loss | Val_Accuracy (%) |
---|---|---|---|---|
VGG13 | 10.52 | 0.025 | 0.018 ± 0.004 | 99.2 ± 0.5 |
VGG16 | 15.79 | 0.032 | 0.009 ± 0.005 | 99.5 ± 0.3 |
MMC | 5.79 | 0.017 | 0.023 ± 0.005 | 99.0 ± 0.5 |
Correlation | Predict | MS | Blast | Noise | Overall Accuracy | |
Class | ||||||
MS | 1377 | 102 | 396 | 78.33% | ||
Blast | 59 | 1289 | 28 | |||
Noise | 484 | 49 | 1376 | |||
AlexNet | Predict | MS | Blast | Noise | Overall Accuracy | |
Class | ||||||
MS | 1876 | 4 | 20 | 98.58% | ||
Blast | 11 | 1434 | 3 | |||
Noise | 33 | 2 | 1777 | |||
MCC | Predict | MS | Blast | Noise | Overall Accuracy | |
Class | ||||||
MS | 1909 | 0 | 9 | 99.54% | ||
Blast | 1 | 1440 | 4 | |||
Noise | 10 | 0 | 1787 |
Correlation | ||||||||
Classes | Precision | Recall | Micro F1-Score | Marco F1-Score | TP | FP | FN | Reported Runtime |
MS | 0.734 | 0.717 | 0.726 | 0.794 | 1377 | 498 | 543 | 1 h |
Blast | 0.937 | 0.895 | 0.915 | 1289 | 87 | 151 | ||
Noise | 0.721 | 0.764 | 0.742 | 1376 | 533 | 424 | ||
AlexNet | ||||||||
Classes | Precision | Recall | Micro F1-Score | Marco F1-Score | TP | FP | FN | Reported Runtime |
MS | 0.987 | 0.977 | 0.982 | 0.986 | 1876 | 24 | 44 | 16 s |
Blast | 0.990 | 0.996 | 0.993 | 1434 | 14 | 6 | ||
Noise | 0.981 | 0.987 | 0.984 | 1777 | 35 | 23 | ||
MMC | ||||||||
Classes | Precision | Recall | Micro F1-Score | Marco F1-Score | TP | FP | FN | Reported Runtime |
MS | 0.995 | 0.994 | 0.995 | 0.996 | 1909 | 9 | 11 | 12 s |
Blast | 0.997 | 1.000 | 0.998 | 1440 | 5 | 0 | ||
Noise | 0.994 | 0.993 | 0.994 | 1787 | 10 | 13 |
Correlation | |||||||
Precision | Recall | Micro F1-Score | Marco F1-Score | TP | FP | FN | |
MS | 0.668 | 0.683 | 0.675 | 0.672 | 205 | 102 | 95 |
Similar noise | 0.676 | 0.660 | 0.668 | 198 | 95 | 102 | |
AlexNet | |||||||
Precision | Recall | Micro F1-Score | Marco F1-Score | TP | FP | FN | |
MS | 0.904 | 0.937 | 0.920 | 0.918 | 281 | 30 | 19 |
Similar noise | 0.934 | 0.900 | 0.917 | 270 | 19 | 30 | |
MMC | |||||||
Precision | Recall | Micro F1-Score | Marco F1-Score | TP | FP | FN | |
MS | 0.945 | 0.970 | 0.957 | 0.957 | 291 | 17 | 9 |
Similar noise | 0.969 | 0.943 | 0.956 | 283 | 9 | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zeng, J.; Ma, C.; Li, T.; Deng, Y.; Song, T. Multi-Classification of Complex Microseismic Waveforms Using Convolutional Neural Network: A Case Study in Tunnel Engineering. Sensors 2021, 21, 6762. https://doi.org/10.3390/s21206762
Zhang H, Zeng J, Ma C, Li T, Deng Y, Song T. Multi-Classification of Complex Microseismic Waveforms Using Convolutional Neural Network: A Case Study in Tunnel Engineering. Sensors. 2021; 21(20):6762. https://doi.org/10.3390/s21206762
Chicago/Turabian StyleZhang, Hang, Jun Zeng, Chunchi Ma, Tianbin Li, Yelin Deng, and Tao Song. 2021. "Multi-Classification of Complex Microseismic Waveforms Using Convolutional Neural Network: A Case Study in Tunnel Engineering" Sensors 21, no. 20: 6762. https://doi.org/10.3390/s21206762
APA StyleZhang, H., Zeng, J., Ma, C., Li, T., Deng, Y., & Song, T. (2021). Multi-Classification of Complex Microseismic Waveforms Using Convolutional Neural Network: A Case Study in Tunnel Engineering. Sensors, 21(20), 6762. https://doi.org/10.3390/s21206762