Distributed Acoustic Sensing Based on Coherent Microwave Photonics Interferometry
Abstract
:1. Introduction
2. Mathematical Model
3. Experiment
3.1. System Configuration
3.2. Frequency and Amplitude Reading
3.3. Temporal Signal Reconstruction
3.4. Distributed Measurement by Using an Array of Reflectors
4. Discussion
4.1. Maximum Measurable Frequency vs. Reception Bandwidth
4.2. Number of Sensors
4.3. Delay in Signal Reading
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walter, F.; Gräff, D.; Lindner, F.; Paitz, P.; Köpfli, M.; Chmiel, M.; Fichtner, A. Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain. Nat. Commun. 2020, 11, 2436. [Google Scholar] [CrossRef]
- Dou, S.; Lindsey, N.; Wagner, A.M.; Daley, T.M.; Freifeld, B.; Robertson, M.; Peterson, J.; Ulrich, C.; Martin, E.R.; Ajo-Franklin, J.B. Distributed acoustic sensing for seismic monitoring of the near surface: A traffic-noise interferometry case study. Sci. Rep. 2017, 7, 11620. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, R.J.; McDonald, M.A.; Basto, D.J. Take the Eh? train: Distributed acoustic sensing (DAS) of commuter trains in a Canadian City. J. Appl. Geophys. 2020, 183, 104201. [Google Scholar] [CrossRef]
- Stajanca, P.; Chruscicki, S.; Homann, T.; Seifert, S.; Schmidt, D.; Habib, A. Detection of leak-induced pipeline vibrations using fiber—Optic distributed acoustic sensing. Sensors 2018, 18, 2841. [Google Scholar] [CrossRef] [PubMed]
- Barrias, A.; Casas, J.R.; Villalba, S. A review of distributed optical fiber sensors for civil engineering applications. Sensors 2016, 16, 748. [Google Scholar] [CrossRef]
- Hartog, A.H. An Introduction to Distributed Optical Fibre Sensors; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Fernández-Ruiz, M.R.; Costa, L.; Martins, H.F. Distributed acoustic sensing using chirped-pulse phase-sensitive OTDR technology. Sensors 2019, 19, 4368. [Google Scholar] [CrossRef]
- Muanenda, Y.; Faralli, S.; Oton, C.J.; Di Pasquale, F. Dynamic phase extraction in a modulated double-pulse ϕ-OTDR sensor using a stable homodyne demodulation in direct detection. Opt. Express 2018, 26, 687–701. [Google Scholar] [CrossRef]
- Zhu, T.; He, Q.; Xiao, X.; Bao, X. Modulated pulses based distributed vibration sensing with high frequency response and spatial resolution. Opt. Express 2013, 21, 2953–2963. [Google Scholar] [CrossRef]
- Muanenda, Y. Recent advances in distributed acoustic sensing based on phase-sensitive optical time domain reflectometry. J. Sensors 2018, 2018, 3897873. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, B.; Xiong, J.; Fu, Y.; Lin, S.; Jiang, J.; Chen, Y.; Wu, Y.; Meng, Q.; Rao, Y. Distributed acoustic sensing based on pulse-coding phase-sensitive OTDR. IEEE Internet Things J. 2019, 6, 6117–6124. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Wang, S.; Xue, N.; Peng, F.; Fan, M.; Sun, W.; Qian, X.; Rao, J.; Rao, Y. Coherent Φ-OTDR based on I/Q demodulation and homodyne detection. Opt. Express 2016, 24, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Pastor-Graells, J.; Cortés, L.R.; Fernández-Ruiz, M.R.; Martins, H.; Azaña, J.; Martin-Lopez, S.; Gonzalez-Herraez, M. SNR enhancement in high-resolution phase-sensitive OTDR systems using chirped pulse amplification concepts. Opt. Lett. 2017, 42, 1728–1731. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Ji, W.; Wang, Q.; Cao, L.; Wang, F.; Zhang, Y.; Zhang, X. Performance optimization for phase-sensitive OTDR sensing system based on multi-spatial resolution analysis. Sensors 2018, 19, 83. [Google Scholar] [CrossRef] [PubMed]
- Zinsou, R.; Liu, X.; Wang, Y.; Zhang, J.; Wang, Y.; Jin, B. Recent progress in the performance enhancement of phase-sensitive OTDR vibration sensing systems. Sensors 2019, 19, 1709. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Wang, C.; Liu, K.; Jiang, J.; Yang, D.; Pan, G.; Pu, Z.; Liu, T. Distributed optical fiber sensors based on optical frequency domain reflectometry: A review. Sensors 2018, 18, 1072. [Google Scholar] [CrossRef]
- Froggatt, M.; Moore, J. High-spatial-resolution distributed strain measurement in optical fiber with Rayleigh scatter. Appl. Opt. 1998, 37, 1735–1740. [Google Scholar] [CrossRef]
- Leviatan, E.; Eyal, A. High resolution DAS via sinusoidal frequency scan OFDR (SFS-OFDR). Opt. Express 2015, 23, 33318–33334. [Google Scholar] [CrossRef]
- Shiloh, L.; Eyal, A. Sinusoidal frequency scan OFDR with fast processing algorithm for distributed acoustic sensing. Opt. Express 2017, 25, 19205–19215. [Google Scholar] [CrossRef]
- Li, H.; Liu, Q.; Chen, D.; Deng, Y.; He, Z. High-spatial-resolution fiber-optic distributed acoustic sensor based on Φ-OFDR with enhanced crosstalk suppression. Opt. Lett. 2020, 45, 563. [Google Scholar] [CrossRef]
- Arbel, D.; Eyal, A. Dynamic optical frequency domain reflectometry. Opt. Express 2014, 22, 8823–8830. [Google Scholar] [CrossRef]
- Hervás, J.; Ricchiuti, A.L.; Li, W.; Zhu, N.H.; Fernández-pousa, C.R. Microwave photonics for optical fiber sensors. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 5602013. [Google Scholar] [CrossRef]
- Huang, J.; Lan, X.; Wang, H.; Yuan, L.; Xiao, H. Optical carrier-based microwave interferometers for sensing application. Fiber Opt. Sens. Appl. XI 2014, 9098, 90980H. [Google Scholar]
- Hua, L.; Song, Y.; Cheng, B.; Zhu, W.; Zhang, Q.; Xiao, H. Coherence-length-gated distributed optical fiber sensing based on microwave-photonic interferometry. Opt. Express 2017, 25, 31362–31376. [Google Scholar] [CrossRef]
- Liehr, S.; Wendt, M.; Krebber, K. Distributed strain measurement in perfluorinated polymer optical fibres using optical frequency domain reflectometry. Meas. Sci. Technol. 2010, 21, 94023. [Google Scholar] [CrossRef]
- Clement, J.; Maestre, H.; Torregrosa, G.; Fernández-Pousa, C.R. Incoherent optical frequency-domain reflectometry based on homodyne electro-optic downconversion for fiber-optic sensor interrogation. Sensors 2019, 19, 2075. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Lan, X.; Luo, M.; Xiao, H. Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry. Opt. Express 2014, 22, 18757–18769. [Google Scholar] [CrossRef] [PubMed]
- Liehr, S.; Nöther, N.; Krebber, K. Incoherent optical frequency domain reflectometry and distributed strain detection in polymer optical fibers. Meas. Sci. Technol. 2009, 21, 017001. [Google Scholar] [CrossRef]
- Ricchiuti, A.L.; Hervas, J.; Barrera, D.; Sales, S.; Capmany, J. Microwave photonics filtering technique for interrogating a very-weak fiber bragg grating cascade sensor. IEEE Photonics J. 2014, 6, 1–10. [Google Scholar] [CrossRef]
- Bellido, J.C.; Peralta, J.H.; Madrigal, J.M.; Vicente, H.M.; Penalva, G.T.; Fernandez-Pousa, C.R.; Maicas, S.S.; Hervas, J.; Maestre, H.; Torregrosa, G. Fast incoherent OFDR interrogation of FBG arrays using sparse radio frequency responses. J. Light. Technol. 2018, 36, 4393–4400. [Google Scholar] [CrossRef]
- Cheng, R.; Xia, L.; Yan, J.; Zhou, J.; Wen, Y.; Rohollahnejad, J. Radio frequency FBG-based interferometer for remote adaptive strain monitoring. IEEE Photonics Technol. Lett. 2015, 27, 1577–1580. [Google Scholar] [CrossRef]
- Hua, L.; Zhu, X.; DeWolf, S.; Lei, J.; Zhang, Q.; Murdoch, L.; Xiao, H. Phase demodulation by frequency chirping in coherence microwave photonic interferometry. IEEE J. Sel. Top. Quantum Electron. 2021, 27, 1–9. [Google Scholar] [CrossRef]
- Redding, B.; Murray, M.J.; Donko, A.; Beresna, M.; Masoudi, A.; Brambilla, G. Low-noise distributed acoustic sensing using enhanced backscattering fiber with ultra-low-loss point reflectors. Opt. Express 2020, 28, 14638–14647. [Google Scholar] [CrossRef]
- Wu, M.; Li, C.; Fan, X.; Liao, C.; He, Z. Large-scale multiplexed weak reflector array fabricated with a femtosecond laser for a fiber-optic quasi-distributed acoustic sensing system. Opt. Lett. 2020, 45, 3685. [Google Scholar] [CrossRef]
- Zhou, D.; Dong, Y.; Yao, J. Truly distributed and ultra-fast microwave photonic fiber-optic sensor. J. Light. Technol. 2020, 38, 4150–4159. [Google Scholar] [CrossRef]
- Zhu, X.; Hua, L.; Tang, J.; Murdoch, L.; Xiao, H. Microwave photonic reflectometry for dark-zone free distributed optical fiber sensing. Opt. Lett. 2021, 46, 1173–1176. [Google Scholar] [CrossRef]
- Požar, T.; Gregorčič, P.; Možina, J. A precise and wide-dynamic-range displacement-measuring homodyne quadrature laser interferometer. Appl. Phys. B 2011, 105, 575–582. [Google Scholar] [CrossRef]
- Cheng, B.; Song, Y.; Hua, L.; Xiao, H. Fabrication and characterization of femtosecond laser induced microwave frequency photonic fiber grating. J. Light. Technol. 2020, 38, 5286–5292. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, L.; Zhu, X.; Cheng, B.; Song, Y.; Zhang, Q.; Wu, Y.; Murdoch, L.C.; Dauson, E.R.; Donahue, C.M.; Xiao, H. Distributed Acoustic Sensing Based on Coherent Microwave Photonics Interferometry. Sensors 2021, 21, 6784. https://doi.org/10.3390/s21206784
Hua L, Zhu X, Cheng B, Song Y, Zhang Q, Wu Y, Murdoch LC, Dauson ER, Donahue CM, Xiao H. Distributed Acoustic Sensing Based on Coherent Microwave Photonics Interferometry. Sensors. 2021; 21(20):6784. https://doi.org/10.3390/s21206784
Chicago/Turabian StyleHua, Liwei, Xuran Zhu, Baokai Cheng, Yang Song, Qi Zhang, Yongji Wu, Lawrence C. Murdoch, Erin R. Dauson, Carly M. Donahue, and Hai Xiao. 2021. "Distributed Acoustic Sensing Based on Coherent Microwave Photonics Interferometry" Sensors 21, no. 20: 6784. https://doi.org/10.3390/s21206784
APA StyleHua, L., Zhu, X., Cheng, B., Song, Y., Zhang, Q., Wu, Y., Murdoch, L. C., Dauson, E. R., Donahue, C. M., & Xiao, H. (2021). Distributed Acoustic Sensing Based on Coherent Microwave Photonics Interferometry. Sensors, 21(20), 6784. https://doi.org/10.3390/s21206784