Adaptive Neural Network Control of Time Delay Teleoperation System Based on Model Approximation
Abstract
:1. Introduction
1.1. Spatial Dynamic Model of Master Slave–Robot Joint
1.2. Space Dynamic Model of Combined Teleoperation System Joint
2. Materials and Methods
2.1. Problem Statement
2.2. Preliminary Knowledge
2.3. Design and Stability Analysis of Bilateral Controller
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bejczy, A.K. Toward advanced teleoperation in space. Prog. Astronaut. Aeronaut. 1994, 161, 107. [Google Scholar]
- Wright, J.; Hartman, F.; Cooper, B.; Maxwell, S.; Morrison, J. Driving on Mars with RSVP. IEEE Robot. Autom. Mag. 2006, 13, 37–45. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, S.; Deng, Y.; Zhang, Y.; Zheng, W. Construction of force haptic reappearance system based on Geomagic Touch haptic device. Comput. Methods Programs Biomed. 2020, 190, 105344. [Google Scholar] [CrossRef] [PubMed]
- DiMaio, S.; Hanuschik, M.; Kreaden, U. The da Vinci surgical system. In Surgical Robotics; Springer: Berlin, Germany, 2011; pp. 199–217. [Google Scholar]
- Li, Y.; Zheng, W.; Liu, X.; Mou, Y.; Yin, L.; Yang, B. Research and improvement of feature detection algorithm based on FAST. Rend. Lincei Sci. Fis. E Nat. 2021, 1–15. [Google Scholar] [CrossRef]
- Xu, C.; Yang, B.; Guo, F.; Zheng, W.; Poignet, P. Sparse-view CBCT reconstruction via weighted Schatten p-norm minimization. Opt. Express 2020, 28, 35469–35482. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Tian, X.; Yin, L.; Yin, Y.; Chen, X.; Zheng, W. Multi-scale relation network for few-shot learning based on meta-learning. In International Conference on Computer Vision Systems; Springer: Cham, Switzerland, 2019; pp. 343–352. [Google Scholar]
- Guo, F.; Yang, B.; Zheng, W.; Liu, S. Power Frequency Estimation Using Sine Filtering of Optimal Initial Phase. Measurement 2021, 186, 110165. [Google Scholar] [CrossRef]
- Ni, X.; Yin, L.; Chen, X.; Liu, S.; Yang, B.; Zheng, W. Semantic representation for visual reasoning. MATEC Web Conf. EDP Sci. 2019, 277, 02006. [Google Scholar] [CrossRef]
- Chen, X.; Yin, L.; Fan, Y.; Song, L.; Ji, T.; Liu, Y.; Zheng, W. Temporal evolution characteristics of PM2. 5 concentration based on continuous wavelet transform. Sci. Total Environ. 2020, 699, 134244. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, X.; Yin, L. Research on image classification method based on improved multi-scale relational network. PeerJ Comput. Sci. 2021, 7, e613. [Google Scholar] [CrossRef]
- Yang, B.; Liu, C.; Huang, K.; Zheng, W. A triangular radial cubic spline deformation model for efficient 3D beating heart tracking. Signal Image Video Process 2017, 11, 1329–1336. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Zheng, W.; Mo, L. Distributed robust H∞ composite-rotating consensus of second-order multi-agent systems. Int. J. Distrib. Sens. Netw. 2017, 13, 1550147717722513. [Google Scholar] [CrossRef]
- Zheng, W.; Yin, L.; Chen, X.; Ma, Z.; Yang, B. Knowledge base graph embedding module design for Visual question answering model. Pattern Recognit. 2021, 120, 108153. [Google Scholar] [CrossRef]
- Li, Z.; Cao, X.; Tang, Y.; Li, R.; Ye, W. Bilateral teleoperation of holonomic constrained robotic systems with time-varying delays. IEEE Trans. Instrum. Meas. 2013, 62, 752–765. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Zheng, W.; Yin, L.; Hu, R.; Yang, B. Endoscope image mosaic based on pyramid ORB. Biomed. Signal Process. Control 2022, 71, 103261. [Google Scholar] [CrossRef]
- Richert, D.; Macnab, C.J.; Pieper, J.K. Adaptive haptic control for telerobotics transitioning between free, soft, and hard environments. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2011, 42, 558–570. [Google Scholar] [CrossRef]
- Liu, Y.; Chopra, N. Control of semi-autonomous teleoperation system with time delays. Automatica 2013, 49, 1553–1565. [Google Scholar] [CrossRef]
- Chen, Z.; Liang, B.; Zhang, T.; Wang, X.; Zhang, B. Adaptive bilateral control for nonlinear uncertain teleoperation with guaranteed transient performance. Robotica 2016, 34, 2205–2222. [Google Scholar] [CrossRef]
- Tang, Y.; Liu, S.; Deng, Y.; Zhang, Y.; Zheng, W. An improved method for soft tissue modeling. Biomed. Signal Process. Control 2021, 65, 102367. [Google Scholar] [CrossRef]
- Yang, B.; Liu, C.; Zheng, W.; Liu, S. Motion prediction via online instantaneous frequency estimation for vision-based beating heart tracking. Inf. Fusion 2017, 35, 58–67. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, W.; Shen, Z. A New Algorithm for Distributed Control Problem with Shortest-Distance Constraints. Math. Probl. Eng. 2016, 2016, 1604824. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, C.; Zhu, Q. Adaptive variable structure control of MIMO nonlinear systems with time-varying delays and unknown dead-zones. Int. J. Autom. Comput. 2009, 6, 124–136. [Google Scholar] [CrossRef]
- Islam, S.; Liu, P.X.; Saddik, A.E.; Yang, Y.B. Bilateral control of teleoperation systems with time delay. IEEE/ASME Trans. Mechatron. 2014, 20, 1–12. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, X.; Ni, X.; Yin, L.; Yang, B. Improving Visual Reasoning Through Semantic Representation. IEEE Access 2021, 9, 91476–91486. [Google Scholar] [CrossRef]
- Yin, S.; Shi, P.; Yang, H. Adaptive fuzzy control of strict-feedback nonlinear time-delay systems with unmodeled dynamics. IEEE Trans. Cybern. 2015, 46, 1926–1938. [Google Scholar] [CrossRef]
- Wang, T.; Gao, H.; Qiu, J. A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Trans. Neural Netw. Learn. Syst. 2015, 27, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Sanner, R.M.; Slotine, J.J.E. Gaussian networks for direct adaptive control. In Proceedings of the 1991 American Control Conference, Boston, MA, USA, 26–28 June 1991; pp. 2153–2159. [Google Scholar]
- Su, X.; Wu, L.; Shi, P. A novel approach to output feedback control of fuzzy stochastic systems. Automatica 2014, 50, 3268–3275. [Google Scholar] [CrossRef]
- Hua, C.; Guan, X. Smooth dynamic output feedback control for multiple time-delay systems with nonlinear uncertainties. Automatica 2016, 68, 1–8. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, X.; Yin, L. Sentence Representation Method Based on Multi-Layer Semantic Network. Appl. Sci. 2021, 11, 1316. [Google Scholar] [CrossRef]
- Ma, Z.; Zheng, W.; Chen, X.; Yin, L. Joint embedding VQA model based on dynamic word vector. PeerJ Comput. Sci. 2021, 7, e353. [Google Scholar] [CrossRef]
- Liu, Y.; Tong, S. Barrier Lyapunov functions for Nussbaum gain adaptive control of full state constrained nonlinear systems. Automatica 2017, 76, 143–152. [Google Scholar] [CrossRef]
- Li, Z.; Cao, X.; Ding, N. Adaptive fuzzy control for synchronization of nonlinear teleoperators with stochastic time-varying communication delays. IEEE Trans. Fuzzy Syst. 2011, 19, 745–757. [Google Scholar] [CrossRef]
- Chen, M.; Tao, G. Adaptive fault-tolerant control of uncertain nonlinear large-scale systems with unknown dead zone. IEEE Trans. Cybern. 2015, 46, 1851–1862. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, X.; Liu, K. Robust adaptive neural tracking control for a class of stochastic nonlinear interconnected systems. IEEE Trans. Neural Netw. Learn. Syst. 2015, 27, 510–523. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, X.; Zheng, W.; Yang, B. Adaptive control for time-delay teleoperation systems with uncertain dynamics. J. Phys. Conf. Ser. 2017, 887, 12074. [Google Scholar] [CrossRef] [Green Version]
Meaning | Symbol |
---|---|
The master and slave robots | |
Joint angular position | |
Angular velocity | |
Angular acceleration | |
The inertia matrix | |
The Coriolis force and centripetal force matrix | |
Jacobian matrix | |
Transposition of the Jacobian matrix | |
The force exerted by the operator on the master robot | |
The interaction force between the slave robot and the environment module |
0.5 kg | 0.6 m | 0.5 kg | 0.4 m | 0.5 kg | 0.6 m | 0.5 kg | 0.4 m |
g | |||||||
1 | 2 | 3 | 3 | 3 | 2 | 4 | |
6 | 0.2 kg | 50 Ns/m | 1000 N/m | 0.1 kg | 20 Ns/m | 1000 N/m |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Tian, J.; Liu, Y.; Yang, B.; Liu, S.; Yin, L.; Zheng, W. Adaptive Neural Network Control of Time Delay Teleoperation System Based on Model Approximation. Sensors 2021, 21, 7443. https://doi.org/10.3390/s21227443
Wang Y, Tian J, Liu Y, Yang B, Liu S, Yin L, Zheng W. Adaptive Neural Network Control of Time Delay Teleoperation System Based on Model Approximation. Sensors. 2021; 21(22):7443. https://doi.org/10.3390/s21227443
Chicago/Turabian StyleWang, Yaxiang, Jiawei Tian, Yan Liu, Bo Yang, Shan Liu, Lirong Yin, and Wenfeng Zheng. 2021. "Adaptive Neural Network Control of Time Delay Teleoperation System Based on Model Approximation" Sensors 21, no. 22: 7443. https://doi.org/10.3390/s21227443
APA StyleWang, Y., Tian, J., Liu, Y., Yang, B., Liu, S., Yin, L., & Zheng, W. (2021). Adaptive Neural Network Control of Time Delay Teleoperation System Based on Model Approximation. Sensors, 21(22), 7443. https://doi.org/10.3390/s21227443