Brain MR Image Enhancement for Tumor Segmentation Using 3D U-Net
Abstract
:1. Introduction
Contribution
- A permutation of different pre-processing techniques for brain tumor segmentation is investigated and results are reported.
- It is demonstrated analytically and confirmed experimentally that the Gibbs ringing artifact removal is an important pre-processing technique which improves segmentation performance in brain MRI.
- Finally, a robust pre-processing framework is proposed for the automatic brain tumor segmentation.
2. Related Work
3. Proposed Methodology
3.1. Dataset
3.2. Utilized Pre-Processing Techniques
3.2.1. Intensity Normalization
3.2.2. Bias Field Correction
3.2.3. Histogram Equalization
3.2.4. Gibbs Ringing Artifact Removal
3.3. Proposed Framework
4. Results and Discussion
4.1. Gibbs Artifact Removed vs. Gibbs Not Removed Results
4.2. Training and Testing Results
4.3. Comparison with Existing Techniques
4.4. Prediction Results
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, L.; Wang, X.; Wang, L. Multi-modal medical image segmentation based on vector-valued active contour models. Inf. Sci. 2020, 513, 504–518. [Google Scholar] [CrossRef]
- Sheela, C.J.J.; Suganthi, G. An efficient denoising of impulse noise from MRI using adaptive switching modified decision based unsymmetric trimmed median filter. Biomed. Signal Process. Control 2020, 55, 101657. [Google Scholar] [CrossRef]
- Wang, X.; Shi, G.; Zhang, P.; Wu, J.; Li, F.; Wang, Y.; Jiang, H. High quality impulse noise removal via non uniform sampling and autoregressive modelling based super-resolution. IET Image Process. 2016, 10, 304–313. [Google Scholar] [CrossRef]
- Sulochana, C.H.; Blessy, S.P.S. Intensity Inhomogeneity Correction in Brain MR Images Based on Filtering Method. In Handbook of Research on Applications and Implementations of Machine Learning Techniques; IGI Global: Derry Townshi, PA, USA, 2020; pp. 96–110. [Google Scholar] [CrossRef] [Green Version]
- Bernal, J.; Kushibar, K.; Asfaw, D.S.; Valverde, S.; Oliver, A.; Martí, R.; Lladó, X. Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: A review. Artif. Intell. Med. 2019, 95, 64–81. [Google Scholar] [CrossRef] [Green Version]
- Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 2014, 34, 1993–2024. [Google Scholar] [CrossRef]
- Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C. N4ITK: Improved N3 bias correction. IEEE Trans. Med. Imaging 2010, 29, 1310–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, S.; Tripathi, P.C.; Bag, S. An Improved Non-local Means Denoising Technique for Brain MRI. In Computational Intelligence in Pattern Recognition; Springer: Singapore, 2020; pp. 765–773. [Google Scholar] [CrossRef]
- Ni, H.; Tan, C.; Feng, Z.; Chen, S.; Zhang, Z.; Li, W.; Guan, Y.; Gong, H.; Luo, Q.; Li, A. A robust image registration interface for large volume brain atlas. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mlynarski, P.; Delingette, H.; Criminisi, A.; Ayache, N. 3D convolutional neural networks for tumor segmentation using long-range 2D context. Comput. Med. Imaging Graph. 2019, 73, 60–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, L.; Zhang, S.; Luo, L. Tumor segmentation and survival prediction in glioma with deep learning. In International MICCAI Brainlesion Workshop; Springer: Cham, Switzerland, 2018; pp. 83–93. [Google Scholar] [CrossRef]
- Weninger, L.; Rippel, O.; Koppers, S.; Merhof, D. Segmentation of brain tumors and patient survival prediction: Methods for the brats 2018 challenge. In International MICCAI Brainlesion Workshop; Springer: Cham, Switzerland, 2018; pp. 3–12. [Google Scholar] [CrossRef]
- Kamnitsas, K.; Ledig, C.; Newcombe, V.F.; Simpson, J.P.; Kane, A.D.; Menon, D.K.; Rueckert, D.; Glocker, B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 2017, 36, 61–78. [Google Scholar] [CrossRef]
- Pereira, S.; Pinto, A.; Alves, V.; Silva, C.A. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 2016, 35, 1240–1251. [Google Scholar] [CrossRef]
- Liu, J.; Li, M.; Wang, J.; Wu, F.; Liu, T.; Pan, Y. A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci. Technol. 2014, 19, 578–595. [Google Scholar] [CrossRef]
- Iglesias, J.E.; Liu, C.-Y.; Thompson, P.M.; Tu, Z. Robust brain extraction across datasets and comparison with publicly available methods. IEEE Trans. Med. Imaging 2011, 30, 1617–1634. [Google Scholar] [CrossRef]
- Smith, S.M. Fast robust automated brain extraction. Hum. Brain Mapp. 2002, 17, 143–155. [Google Scholar] [CrossRef]
- Shi, F.; Wang, L.; Dai, Y.; Gilmore, J.H.; Lin, W.; Shen, D. LABEL: Pediatric brain extraction using learning-based meta-algorithm. Neuroimage 2012, 62, 1975–1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, S.; Fejes, T.; Reyes, M. A skull-stripping filter for ITK. Insight J. 2013, 1–7. [Google Scholar] [CrossRef]
- Toga, A.W.; Thompson, P.M. The role of image registration in brain mapping. Image Vis. Comput. 2001, 19, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Akkus, Z.; Galimzianova, A.; Hoogi, A.; Rubin, D.L.; Erickson, B.J. Deep learning for brain MRI segmentation: State of the art and future directions. J. Digit. Imaging 2017, 30, 449–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reza, S.; Iftekharuddin, K.M. Improved brain tumor tissue segmentation using texture features. In Proceedings of the MICCAI Brain Tumor Segmentation Challenge (BraTS), Boston, MA, USA, 14–18 September 2014; pp. 27–30. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Jayasumana, S.; Romera-Paredes, B.; Vineet, V.; Su, Z.; Du, D.; Huang, C.; Torr, P.H. Conditional random fields as recurrent neural networks. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December 2015; pp. 1529–1537. [Google Scholar] [CrossRef] [Green Version]
- Nyúl, L.G.; Udupa, J.K.; Zhang, X. New variants of a method of MRI scale standardization. IEEE Trans. Med. Imaging 2000, 19, 143–150. [Google Scholar] [CrossRef]
- Sun, X.; Shi, L.; Luo, Y.; Yang, W.; Li, H.; Liang, P.; Li, K.; Mok, V.C.; Chu, W.C.; Wang, D. Histogram-based normalization technique on human brain magnetic resonance images from different acquisitions. Biomed. Eng. Online 2015, 14, 73. [Google Scholar] [CrossRef] [Green Version]
- Krissian, K.; Aja-Fernández, S. Noise-driven anisotropic diffusion filtering of MRI. IEEE Trans. Image Process. 2009, 18, 2265–2274. [Google Scholar] [CrossRef]
- Manjón, J.V.; Carbonell-Caballero, J.; Lull, J.J.; García-Martí, G.; Martí-Bonmatí, L.; Robles, M. MRI denoising using non-local means. Med. Image Anal. 2008, 12, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, M.S.; Movellan, J.R.; Sejnowski, T.J. Face recognition by independent component analysis. IEEE Trans. Neural Netw. 2002, 13, 1450–1464. [Google Scholar] [CrossRef]
- Bellon, E.M.; Haacke, E.M.; Coleman, P.E.; Sacco, D.C.; Steiger, D.A.; Gangarosa, R.E. MR artifacts: A review. Am. J. Roentgenol. 1986, 147, 1271–1281. [Google Scholar] [CrossRef] [Green Version]
- Sled, J.G.; Zijdenbos, A.P.; Evans, A.C. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 1998, 17, 87–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellner, E.; Dhital, B.; Kiselev, V.G.; Reisert, M. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn. Reson. Med. 2016, 76, 1574–1581. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.H.; Novikov, D.S.; Fieremans, E. Removal of partial Fourier-induced Gibbs (RPG) ringing artifacts in MRI. Magn. Reson. Med. 2021. [Google Scholar] [CrossRef]
- Penkin, M.; Krylov, A.; Khvostikov, A. Attention-based Convolutional Neural Network for MRI Gibbs-ringing Artifact Suppression. In Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020), Saint Petersburg, Russia, 22–25 September 2020; p. 34. [Google Scholar] [CrossRef]
- Yida, W.; Yang, S.; Haibin, X.; Wenjing LBingwen, H.; Guang, Y. Reduction of Gibbs artifacts in magnetic resonance imaging based on Convolutional Neural Network. In Proceedings of the 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai, China, 14–16 October 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Amorim, P.; Moraes, T.; Silva, J.; Pedrini, H. 3D Adaptive Histogram Equalization Method for Medical Volumes. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Funchal, Portugal, 27–29 January 2018. [Google Scholar] [CrossRef]
- Berg, E.S. Effect of Free Water Elimination on Diffusion Indices in Healthy Volunteers and Patients with Multiple Sclerosis. Master’s Thesis, The University of Bergen, Bergen, Norway, 2018. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef] [Green Version]
- Isensee, F.; Kickingereder, P.; Wick, W.; Bendszus, M.; Maier-Hein, K.H. Brain tumor segmentation and radiomics survival prediction: Contribution to the brats 2017 challenge. In International MICCAI Brainlesion Workshop 2017; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Anwar, S.M.; Majid, M. Brain tumor segmentation using cascaded deep convolutional neural network. In Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju, Korea, 11–15 July 2017; pp. 1998–2001. [Google Scholar] [CrossRef]
- Dong, H.; Yang, G.; Liu, F.; Mo, Y.; Guo, Y. Automatic brain tumor detection and segmentation using u-net based fully convolutional networks. In Annual Conference on Medical Image Understanding and Analysis; Springer: Cham, Switzerland, 2017; pp. 506–517. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Liu, B.; Peng, S.; Sun, J.; Qiao, X. S3D-UNet: Separable 3D U-Net for brain tumor segmentation. In International MICCAI Brainlesion Workshop; Springer: Cham, Switzerland, 2019; pp. 358–368. [Google Scholar] [CrossRef]
- Kao, P.Y.; Ngo, T.; Zhang, A.; Chen, J.W.; Manjunath, B.S. Brain tumor segmentation and tractographic feature extraction from structural MR Images for overall survival prediction. In International MICCAI Brainlesion Workshop; Springer: Cham, Switzerland, 2018; pp. 128–141. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Tustison, N.; Meyer, C. Brain tumor segmentation using an ensemble of 3d u-nets and overall survival prediction using radiomic features. In International MICCAI Brainlesion Workshop; Springer: Cham, Switzerland, 2018; pp. 279–288. [Google Scholar] [CrossRef] [Green Version]
- Havaei, M.; Davy, A.; Warde-Farley, D.; Biard, A.; Courville, A.; Bengio, Y.; Pal, C.; Jodoin, P.; Larochelle, H. Brain tumor segmentation with deep neural networks. Med. Image Anal. 2017, 38, 18–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myronenko, A. 3D MRI brain tumor segmentation using autoencoder regularization. In International MICCAI Brainlesion Workshop 2019; Springer: Cham, Switzerland, 2019; pp. 311–320. [Google Scholar] [CrossRef] [Green Version]
No. | BraTS Dataset | Gibbs Ringing Artifact Removed | Dice Score | ||
---|---|---|---|---|---|
Whole | Core | Enhancing | |||
1 | 2018 | ✖ | 0.88 | 0.82 | 0.67 |
2 | 2018 | ✔ | 0.91 | 0.85 | 0.67 |
3 | 2015 | ✖ | 0.85 | 0.71 | 0.57 |
4 | 2015 | ✔ | 0.90 | 0.82 | 0.57 |
5 | 2013 | ✖ | 0.84 | 0.82 | 0.59 |
6 | 2013 | ✔ | 0.90 | 0.81 | 0.58 |
Sequence No | Gibbs Artifact Removed | Bias Field Corrected | Intensity Normalized | AHE | Mean Dice Score (Training and Testing) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Whole | Core | Enhancing | ||||||||
Training | Testing | Training | Testing | Training | Testing | |||||
Seq.1 | ✔ | ✖ | ✖ | ✖ | 0.91 | 0.90 | 0.85 | 0.80 | 0.67 | 0.60 |
Seq.2 | ✔ | ✔ | ✖ | ✖ | 0.88 | 0.88 | 0.83 | 0.78 | 0.68 | 0.57 |
Seq.3 | ✔ | ✖ | ✖ | ✔ | 0.86 | 0.89 | 0.75 | 0.79 | 0.73 | 0.59 |
Seq.4 | ✔ | ✔ | ✖ | ✔ | 0.87 | 0.81 | 0.73 | 0.66 | 0.64 | 0.53 |
Seq.5 | ✔ | ✖ | Z-score | ✖ | 0.84 | 0.86 | 0.68 | 0.76 | 0.63 | 0.56 |
Seq.6 | ✔ | ✔ * | ✖ | ✖ | 0.91 | 0.90 | 0.86 | 0.83 | 0.70 | 0.71 |
Seq.7 | ✔ | ✔ * | Z-score | ✖ | 0.81 | 0.80 | 0.74 | 0.68 | 0.57 | 0.54 |
Seq.8 | ✔ | ✔ * | Nyul | ✖ | 0.86 | 0.88 | 0.78 | 0.80 | 0.69 | 0.56 |
Seq.9 | ✔ | ✖ | ✖ | ✖ | 0.90 | 0.89 | 0.82 | 0.76 | 0.57 | 0.53 |
Seq.10 | ✔ | ✖ | ✖ | ✖ | 0.90 | 0.85 | 0.81 | 0.72 | 0.58 | 0.52 |
S. No | Reference | BraTS Dataset | Mean Dice Score (Training) | Mean Dice Score (Testing) | ||||
---|---|---|---|---|---|---|---|---|
Whole | Core | Enhancing | Whole | Core | Enhancing | |||
1 | [39] | 2013 | 0.80 | 0.67 | 0.85 | - | - | - |
2 | [40] | 2015 | 0.86 | 0.86 | 0.65 | - | - | - |
3 | [12] | 2018 | 0.86 | 0.81 | 0.76 | 0.84 | 0.72 | 0.62 |
4 | [38] | 2017 | 0.89 | 0.79 | 0.73 | 0.85 | 0.77 | 0.64 |
5 | [41] | 2018 | 0.89 | 0.86 | 0.68 | 0.83 | 0.78 | 0.68 |
6 | [13] | 2015 | 0.90 | 0.75 | 0.73 | 0.85 | 0.67 | 0.63 |
7 | [42] | 2018 | 0.90 | 0.81 | 0.73 | 0.87 | 0.79 | 0.74 |
8 | [43] | 2018 | 0.90 | 0.83 | 0.79 | - | - | - |
9 | [11] | 2018 | 0.90 | 0.84 | 0.80 | 0.87 | 0.79 | 0.71 |
10 | [44] | 2013 | - | - | - | 0.88 | 0.79 | 0.73 |
11 | [23] | 2013 | - | - | - | 0.88 | 0.83 | 0.77 |
12 | [45] | 2018 | 0.91 | 0.86 | 0.82 | 0.88 | 0.81 | 0.76 |
13 | Proposed method | 2018 | 0.91 | 0.86 | 0.70 | 0.90 | 0.83 | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, F.; Ansari, S.U.; Hanif, M.; Ayari, M.A.; Chowdhury, M.E.H.; Khandakar, A.A.; Khan, M.S. Brain MR Image Enhancement for Tumor Segmentation Using 3D U-Net. Sensors 2021, 21, 7528. https://doi.org/10.3390/s21227528
Ullah F, Ansari SU, Hanif M, Ayari MA, Chowdhury MEH, Khandakar AA, Khan MS. Brain MR Image Enhancement for Tumor Segmentation Using 3D U-Net. Sensors. 2021; 21(22):7528. https://doi.org/10.3390/s21227528
Chicago/Turabian StyleUllah, Faizad, Shahab U. Ansari, Muhammad Hanif, Mohamed Arselene Ayari, Muhammad Enamul Hoque Chowdhury, Amith Abdullah Khandakar, and Muhammad Salman Khan. 2021. "Brain MR Image Enhancement for Tumor Segmentation Using 3D U-Net" Sensors 21, no. 22: 7528. https://doi.org/10.3390/s21227528
APA StyleUllah, F., Ansari, S. U., Hanif, M., Ayari, M. A., Chowdhury, M. E. H., Khandakar, A. A., & Khan, M. S. (2021). Brain MR Image Enhancement for Tumor Segmentation Using 3D U-Net. Sensors, 21(22), 7528. https://doi.org/10.3390/s21227528