Towards Understanding the Interconnection between Celestial Pole Motion and Earth’s Magnetic Field Using Space Geodetic Techniques
Abstract
:1. Introduction
2. Data Set and Time Series Analysis
2.1. GMF Data
2.1.1. Geomagnetic Field Model
2.1.2. GMJ
2.1.3. Magnetic Dipole Moment
2.2. FCN Data
3. Method
4. Discussion of Results
4.1. Geomagnetic Spherical Harmonic Coefficients and FCN
4.2. FCN and Magnetic Dipole Moment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnes, R.; Hide, R.; White, A.; Wilson, C. Atmospheric angular momentum fluctuations, length-of-day changes and polar motion. Proc. R. Soc. London Math. Phys. Sci. 1983, 387, 31–73. [Google Scholar]
- Salstein, D. Monitoring atmospheric winds and pressures for Earth orientation studies. Adv. Space Res. 1993, 13, 175–184. [Google Scholar] [CrossRef]
- Seitz, F.; Schuh, H. Earth rotation. In Sciences of Geodesy-I; Springer: Berlin, Germany, 2010; pp. 185–227. [Google Scholar]
- Capitaine, N.; Wallace, P.T.; Chapront, J. Expressions for IAU 2000 precession quantities. Astron. Astrophys. 2003, 412, 567–586. [Google Scholar] [CrossRef]
- Capitaine, N.; Wallace, P.T.; Chapront, J. Improvement of the IAU 2000 precession model. Astron. Astrophys. 2005, 432, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Mathews, P.M.; Herring, T.A.; Buffett, B.A. Modeling of nutation and precession: New nutation series for nonrigid Earth and insights into the Earth’s interior. J. Geophys. Res. Solid Earth 2002, 107, ETG-3. [Google Scholar] [CrossRef]
- Petit, G.; Luzum, B. IERS Conventions; Bureau International des Poids et Mesures: Sevres, France, 2010. [Google Scholar]
- Smith, M.L. Wobble and nutation of the Earth. Geophys. J. Int. 1977, 50, 103–140. [Google Scholar] [CrossRef] [Green Version]
- Toomre, A. On the ‘Nearly Diurnal Wobble’ of the Earth. Geophys. J. Int. 1974, 38, 335–348. [Google Scholar] [CrossRef] [Green Version]
- Krásná, H.; Böhm, J.; Schuh, H. Free core nutation observed by VLBI. Astron. Astrophys. 2013, 555, A29. [Google Scholar] [CrossRef] [Green Version]
- Escapa, A.; Getino, J.; Ferrándiz, J.; Baenas, T. On the changes of IAU 2000 nutation theory stemming from IAU 2006 precession theory. In Proceedings of the Journées 2013, Paris, France, 16–18 September 2013; pp. 148–151. [Google Scholar]
- Escapa, A.; Ferrándiz, J.M.; Baenas, T.; Getino, J.; Navarro, J.F.; Belda-Palazón, S. Consistency Problems in the Improvement of the IAU Precession–Nutation Theories: Effects of the Dynamical Ellipticity Differences. Pure Appl. Geophys. 2016, 173, 861–870. [Google Scholar] [CrossRef] [Green Version]
- Belda, S.; Heinkelmann, R.; Ferrándiz, J.M.; Nilsson, T.; Schuh, H. On the consistency of the current conventional EOP series and the celestial and terrestrial reference frames. J. Geod. 2017, 91, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Escapa, A.; Getino, J.; Ferrándiz, J.; Baenas, T. Dynamical adjustments in IAU 2000A nutation series arising from IAU 2006 precession. Astron. Astrophys. 2017, 604, A92. [Google Scholar] [CrossRef] [Green Version]
- Escapa, A.; Capitaine, N. A global set of adjustments to make the IAU 2000A nutation consistent with the IAU 2006 precession. In Proceedings of the Journées 2017, Alicante, Spain, 25–27 September 2017. [Google Scholar]
- Ferrándiz, J.M.; Al Koudsi, D.; Escapa, A.; Belda, S.; Modiri, S.; Heinkelmann, R.; Schuh, H. A First Assessment of the Corrections for the Consistency of the IAU2000 and IAU2006 Precession-Nutation Models; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Belda, S.; Heinkelmann, R.; Ferrándiz, J.M.; Karbon, M.; Nilsson, T.; Schuh, H. An Improved Empirical Harmonic Model of the Celestial Intermediate Pole Offsets from a Global VLBI Solution. Astron. J. 2017, 154, 166. [Google Scholar] [CrossRef] [Green Version]
- Koot, L.; Dumberry, M.; Rivoldini, A.; De Viron, O.; Dehant, V. Constraints on the coupling at the core–mantle and inner core boundaries inferred from nutation observations. Geophys. J. Int. 2010, 182, 1279–1294. [Google Scholar] [CrossRef] [Green Version]
- Lambert, S.; Rosat, S.; Cui, X.; Rogister, Y.; Bizouard, C. A search for the free inner core nutation in VLBI data. In Proceedings of the IVS 2012 General Meeting, Madrid, Spain, 4–9 March 2012. [Google Scholar]
- Malkin, Z. Free core nutation and geomagnetic jerks. J. Geodyn. 2013, 72, 53–58. [Google Scholar] [CrossRef]
- Shirai, T.; Fukushima, T.; Malkin, Z. Detection of phase disturbances of free core nutation of the Earth and their concurrence with geomagnetic jerks. Earth Planets Space 2005, 57, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Malkin, Z. Free core nutation: New large disturbance and connection evidence with geomagnetic jerks. Acta Geodyn. Geomater 2015, 1, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Le Mouël, J.L.; Madden, T.R.; Ducruix, J.; Courtillot, V. Decade fluctuations in geomagnetic westward drift and Earth rotation. Nature 1981, 290, 763–765. [Google Scholar] [CrossRef]
- Mandea, M.; Bellanger, E.; Le Mouël, J.L. A geomagnetic jerk for the end of the 20th century? Earth Planet. Sci. Lett. 2000, 183, 369–373. [Google Scholar] [CrossRef]
- Bellanger, E.; Gibert, D.; Le Mouël, J.L. A geomagnetic triggering of Chandler wobble phase jumps? Geophys. Res. Lett. 2002, 29, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Holme, R.d.; De Viron, O. Geomagnetic jerks and a high-resolution length-of-day profile for core studies. Geophys. J. Int. 2005, 160, 435–439. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.; Jackson, L.; Mound, J. Assessing the importance and expression of the 6 year geomagnetic oscillation. J. Geophys. Res. Solid Earth 2012, 117, B10. [Google Scholar] [CrossRef] [Green Version]
- Gorshkov, V.; Miller, N.; Vorotkov, M. Manifestation of solar and geodynamic activity in the dynamics of the Earth’s rotation. Geomagn. Aeron. 2012, 52, 944–952. [Google Scholar] [CrossRef]
- Gerick, F.; Jault, D.; Noir, J.; Vidal, J. Pressure torque of torsional Alfvén modes acting on an ellipsoidal mantle. Geophys. J. Int. 2020, 222, 338–351. [Google Scholar] [CrossRef]
- Wahr, J.M. The forced nutations of an elliptical, rotating, elastic and oceanless earth. Geophys. J. Int. 1981, 64, 705–727. [Google Scholar] [CrossRef] [Green Version]
- Vondrák, J.; Ron, C. Earth orientation and its excitations by atmosphere, oceans, and geomagnetic jerks. Serbian Astron. J. 2015, 59–66. [Google Scholar] [CrossRef]
- Dehant, V.; Mathews, P. Information about the core from Earth nutation. Earth’s Core Dyn. Struct. Rotation Geodyn. Ser. 2003, 31, 263–277. [Google Scholar]
- Buffett, B.A. Influence of a toroidal magnetic field on the nutations of Earth. J. Geophys. Res. Solid Earth 1993, 98, 2105–2117. [Google Scholar] [CrossRef]
- Greff-Lefftz, M.; Legros, H. Magnetic field and rotational eigenfrequencies. Phys. Earth Planet. Inter. 1999, 112, 21–41. [Google Scholar] [CrossRef]
- Greff-Lefftz, M.; Legros, H.; Dehant, V. Influence of the inner core viscosity on the rotational eigenmodes of the Earth. Phys. Earth Planet. Inter. 2000, 122, 187–204. [Google Scholar] [CrossRef]
- Sasao, T.; Okubo, S.; Saito, M.; Fedorov, E.; Smith, M.; Bender, P. Proceedings of the IAU Symposium 78; Springer Science & Business Media: Berlin, Germany, 1980. [Google Scholar]
- Mathews, P.; Buffett, B.A.; Herring, T.A.; Shapiro, I.I. Forced nutations of the Earth: Influence of inner core dynamics: 1. Theory. J. Geophys. Res. Solid Earth 1991, 96, 8219–8242. [Google Scholar] [CrossRef]
- Huang, C.L.; Dehant, V.; Liao, X.H.; Van Hoolst, T.; Rochester, M. On the coupling between magnetic field and nutation in a numerical integration approach. J. Geophys. Res. Solid Earth 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Sasao, T.; Wahr, J.M. An excitation mechanism for the free ‘core nutation’. Geophys. J. Int. 1981, 64, 729–746. [Google Scholar] [CrossRef]
- Cui, X.; Sun, H.; Xu, J.; Zhou, J.; Chen, X. Relationship between free core nutation and geomagnetic jerks. J. Geod. 2020, 94, 1–13. [Google Scholar] [CrossRef]
- Olsen, N.; Lühr, H.; Sabaka, T.J.; Mandea, M.; Rother, M.; Tøffner-Clausen, L.; Choi, S. CHAOS—a model of the Earth’s magnetic field derived from CHAMP, Ørsted, and SAC-C magnetic satellite data. Geophys. J. Int. 2006, 166, 67–75. [Google Scholar] [CrossRef]
- Olsen, N.; Mandea, M.; Sabaka, T.J.; Tøffner-Clausen, L. CHAOS-2—a geomagnetic field model derived from one decade of continuous satellite data. Geophys. J. Int. 2009, 179, 1477–1487. [Google Scholar] [CrossRef] [Green Version]
- Olsen, N.; Mandea, M.; Sabaka, T.J.; Tøffner-Clausen, L. The CHAOS-3 geomagnetic field model and candidates for the 11th generation IGRF. Earth Planets Space 2010, 62, 1. [Google Scholar] [CrossRef] [Green Version]
- Olsen, N.; Lühr, H.; Finlay, C.C.; Sabaka, T.J.; Michaelis, I.; Rauberg, J.; Tøffner-Clausen, L. The CHAOS-4 geomagnetic field model. Geophys. J. Int. 2014, 197, 815–827. [Google Scholar] [CrossRef]
- Finlay, C.C.; Olsen, N.; Kotsiaros, S.; Gillet, N.; Tøffner-Clausen, L. Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model. Earth Planets Space 2016, 68, 112. [Google Scholar] [CrossRef] [Green Version]
- Olsen, N.; Holme, R.; Hulot, G.; Sabaka, T.; Neubert, T.; Tøffner-Clausen, L.; Primdahl, F.; Jørgensen, J.; Léger, J.; Barraclough, D.; et al. Ørsted initial field model. Geophys. Res. Lett. 2000, 27, 3607–3610. [Google Scholar] [CrossRef] [Green Version]
- Greiner-Mai, H.; Hagedoorn, J.; Ballani, L.; Wardinski, I.; Stromeyer, D.; Hengst, R. Axial poloidal electromagnetic core-mantle coupling torque: A re-examination for different conductivity and satellite supported geomagnetic field models. Stud. Geophys. Geod. 2007, 51, 491–513. [Google Scholar] [CrossRef] [Green Version]
- Rajabi, M.; Amiri-Simkooei, A.; Nahavandchi, H.; Nafisi, V. Modeling and prediction of regular ionospheric variations and deterministic anomalies. Remote Sens. 2020, 12, 936. [Google Scholar] [CrossRef] [Green Version]
- Olsen, N.; Mandea, M. Investigation of a secular variation impulse using satellite data: The 2003 geomagnetic jerk. Earth Planet. Sci. Lett. 2007, 255, 94–105. [Google Scholar] [CrossRef]
- Mandea, M.; Holme, R.; Pais, A.; Pinheiro, K.; Jackson, A.; Verbanac, G. Geomagnetic jerks: Rapid core field variations and core dynamics. Space Sci. Rev. 2010, 155, 147–175. [Google Scholar] [CrossRef]
- Chulliat, A.; Thébault, E.; Hulot, G. Core field acceleration pulse as a common cause of the 2003 and 2007 geomagnetic jerks. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef] [Green Version]
- Torta, J.M.; Pavón-Carrasco, F.J.; Marsal, S.; Finlay, C.C. Evidence for a new geomagnetic jerk in 2014. Geophys. Res. Lett. 2015, 42, 7933–7940. [Google Scholar] [CrossRef]
- Sabaka, T.J.; Olsen, N.; Purucker, M.E. Extending comprehensive models of the Earth’s magnetic field with Ørsted and CHAMP data. Geophys. J. Int. 2004, 159, 521–547. [Google Scholar] [CrossRef]
- Chulliat, A.; Alken, P.; Maus, S. Fast equatorial waves propagating at the top of the Earth’s core. Geophys. Res. Lett. 2015, 42, 3321–3329. [Google Scholar] [CrossRef]
- Merrill, R.T.; McElhinny, M.W.; McFadden, P.L. The Magnetic Field of the Earth; Academic Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Belda, S.; Ferrandiz, J.M.; Heinkelmann, R.; Nilsson, T.; Schuh, H. Testing a new free core nutation empirical model. J. Geodyn. 2016, 94, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Lambert, S. Empirical modeling of the retrograde Free Core Nutation. Available online: https://hpiers.obspm.fr/iers/models/fcn/notice.pdf (accessed on 11 November 2021).
- Schuh, H.; Heinkelmann, R.; Beyerle, G.; Anderson, J.; Balidakis, K.; Belda, S.; Dhar, S.; Glaser, S.; Jenie, O.; Karbon, M.; et al. The Potsdam Open Source Radio Interferometry Tool (PORT). Publ. Astron. Soc. Pac. 2021, 133, 104503. [Google Scholar] [CrossRef]
- Malkin, Z.M. Empiric models of the Earth’s free core nutation. Sol. Syst. Res. 2007, 41, 492–497. [Google Scholar] [CrossRef] [Green Version]
- Dehant, V.; Mathews, P.M. Precession, Nutation and Wobble of the Earth; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar] [CrossRef]
- Chao, B.F. On rotational normal modes of the Earth: Resonance, excitation, convolution, deconvolution and all that. Geod. Geodyn. 2017, 8, 371–376. [Google Scholar] [CrossRef]
- Gubanov, V.S. New estimates of retrograde free core nutation parameters. Astron. Lett. 2010, 36, 444–451. [Google Scholar] [CrossRef]
- Gubanov, V.S. Dynamics of the Earth’s core from VLBI observations. Astron. Lett. 2009, 35, 270–277. [Google Scholar] [CrossRef]
- Hoseini, M.; Alshawaf, F.; Nahavandchi, H.; Dick, G.; Wickert, J. Towards a zero-difference approach for homogenizing gnss tropospheric products. GPS Solut. 2020, 24, 1–12. [Google Scholar] [CrossRef]
- Ghil, M.; Allen, M.; Dettinger, M.; Ide, K.; Kondrashov, D.; Mann, M.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; et al. Advanced spectral methods for climatic time series. Rev. Geophys. 2002, 40, 3-1–3-41. [Google Scholar] [CrossRef] [Green Version]
- Golyandina, N.; Shlemov, A. Variations of singular spectrum analysis for separability improvement: Non-orthogonal decompositions of time series. arXiv 2013, arXiv:1308.4022. [Google Scholar] [CrossRef] [Green Version]
- Torrence, C.; Webster, P.J. Interdecadal changes in the ENSO–monsoon system. J. Clim. 1999, 12, 2679–2690. [Google Scholar] [CrossRef] [Green Version]
- Lachaux, J.; Lutz, A.; Rudrauf, D.; Cosmelli, D.; Le Van Quyen, M.; Martinerie, J.; Varela, F. Estimating the time-course of coherence between single-trial brain signals: An introduction to wavelet coherence. Neurophysiol. Clin. Neurophysiol. 2002, 32, 157–174. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Eur. Geosci. Union (EGU) 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Gibert, D.; Holschneider, M.; Le Mouël, J.L. Wavelet analysis of the Chandler wobble. J. Geophys. Res. Solid Earth 1998, 103, 27069–27089. [Google Scholar] [CrossRef]
GMFZonal | GMFTesseral | GMFSectoral | DM Rate | d2DM/dt2 | |
---|---|---|---|---|---|
1 | 91.7 | 97.8 | 81.6 | 81.3 | 83.1 |
2 | 52.2 | 23.4 | 38.2 | 40.5 | 49.9 |
3 | 44.3 | 37.5 | 30.9 | 24.3 | 31.1 |
4 | 29.4 | 44.5 | 25.6 | 17.3 | 24.9 |
5 | 24.8 | 29.7 | 22.4 | 1.9 | 15.5 |
FCNX | FCNY | FCNX0 | FCNY0 | FCNAmp | FCNPhase | |
---|---|---|---|---|---|---|
1 | 15.1 | 15.1 | 27.7 | 1.66 | 33.2 | 55.3 |
2 | 33.2 | 55.3 | 18.4 | 23.7 | 23.7 | 33.2 |
3 | 20.8 | 33.2 | 12.8 | 16.6 | 15.1 | 18.4 |
4 | 8.7 | 11.1 | 10.8 | 13.8 | 11.1 | 11.9 |
5 | 7.5 | 23.7 | 8.7 | 11.9 | 9.2 | 15.1 |
FCNX | FCNY | FCNX0 | FCNY0 | FCNAmp | FCNPhase | |
---|---|---|---|---|---|---|
1 | 15.1 | 15.1 | 83 | 166.0 | 15.1 | 15.1 |
2 | 11.1 | 27.7 | 23.7 | 23.7 | 23.7 | 11.9 |
3 | 8.7 | 41.5 | 33.2 | 55.3 | 11.9 | 55.3 |
4 | 27.7 | 8.7 | 15.1 | 33.2 | 8.7 | 8.7 |
5 | 41.5 | 7.5 | 10.4 | 8.7 | 83.0 | 18.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Modiri, S.; Heinkelmann, R.; Belda, S.; Malkin, Z.; Hoseini, M.; Korte, M.; Ferrándiz, J.M.; Schuh, H. Towards Understanding the Interconnection between Celestial Pole Motion and Earth’s Magnetic Field Using Space Geodetic Techniques. Sensors 2021, 21, 7555. https://doi.org/10.3390/s21227555
Modiri S, Heinkelmann R, Belda S, Malkin Z, Hoseini M, Korte M, Ferrándiz JM, Schuh H. Towards Understanding the Interconnection between Celestial Pole Motion and Earth’s Magnetic Field Using Space Geodetic Techniques. Sensors. 2021; 21(22):7555. https://doi.org/10.3390/s21227555
Chicago/Turabian StyleModiri, Sadegh, Robert Heinkelmann, Santiago Belda, Zinovy Malkin, Mostafa Hoseini, Monika Korte, José M. Ferrándiz, and Harald Schuh. 2021. "Towards Understanding the Interconnection between Celestial Pole Motion and Earth’s Magnetic Field Using Space Geodetic Techniques" Sensors 21, no. 22: 7555. https://doi.org/10.3390/s21227555
APA StyleModiri, S., Heinkelmann, R., Belda, S., Malkin, Z., Hoseini, M., Korte, M., Ferrándiz, J. M., & Schuh, H. (2021). Towards Understanding the Interconnection between Celestial Pole Motion and Earth’s Magnetic Field Using Space Geodetic Techniques. Sensors, 21(22), 7555. https://doi.org/10.3390/s21227555