Simulating 50 keV X-ray Photon Detection in Silicon with a Down-Conversion Layer
Abstract
:1. Introduction
2. PAL-Si Simulations
3. Monte Carlo Model
3.1. Relaxation and Cascade Process
3.2. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Larsson, J. X-ray Detector Characterization—A Comparison of Scintillators; KTH Royal Institute of Technology: Stockholm, Sweden, 2013. [Google Scholar]
- Hudson, L. X-ray Transition Energies, NIST Standard Reference Database. Rev. Mod. Phys. 2005, 75, 35–99. [Google Scholar] [CrossRef]
- Lee, E.; Anagnost, K.; Wang, Z.; James, M.; Fossum, E.; Liu, J. Monte Carlo Modeling and Design of Photon Energy Attenuation Layers for >10× Quantum Yield Enhancement in Si-Based Hard X-ray Detectors. Instruments 2021, 5, 17. [Google Scholar] [CrossRef]
- Spiegel, P.K. The first clinical X-ray made in America—100 years. Am. J. Roentgenol. 1995, 164, 241–243. [Google Scholar] [CrossRef] [PubMed]
- Schulman, T. Si, CdTe and CdZnTe Radiation Detectors for Imaging Applications. Master’s Thesis, University of Helsinki, Helsinki, Finland, 2006. [Google Scholar]
- Durini, D. High Performance Silicon Imaging: Fundamentals and Applications of CMOS and CCD Sensors; Woodhead Publishing: Cambridge, UK, 2020; ISBN 9780081024355. [Google Scholar]
- Spieler, H. Semiconductor Detector Systems; Series on semiconductor science and technology; Oxford University Press: Oxford, UK; New York, NY, USA, 2005; ISBN 9780198527848. [Google Scholar]
- Monte Carlo Methods, Codes & Applications Group. Available online: https://mcnp.lanl.gov (accessed on 12 May 2020).
- Smet, V.D. Study of a GEM Tracker of Charged Particles for the Hall a High Luminosity Spectrometers at Jefferson Lab. Master’s Thesis, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, September 2011. [Google Scholar]
- Attard, G.; Barnes, C. Surfaces; Oxford science publications; Oxford University Press: Oxford, UK; New York, NY, USA, 1998; ISBN 9780198556862. [Google Scholar]
- Seltzer, S. Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest. Available online: http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html (accessed on 12 May 2020).
- Lee, E.; Anagnost, K.M.; Yue, X.; Baldwin, J.K.S.; Levey, C.G.; Wang, Z.; Fossum, E.R.; Liu, J. Towards the Quantum Yield Enhancement of High-Energy X-ray Detection by Si CMOS Image Sensors Using High-Z Thin-Film Semiconductor Photon Energy Attenuation Layers. Available online: https://www.krellinst.org/nnsassgf/conf/2021/pres/lee2019.pdf (accessed on 12 May 2021).
- Opachich, Y.P.; Bell, P.M.; Bradley, D.K.; Chen, N.; Feng, J.; Gopal, A.; Hatch, B.; Hilsabeck, T.J.; Huffman, E.; Koch, J.A.; et al. Structured photocathodes for improved high-energy x-ray efficiency in streak cameras. Rev. Sci. Instrum. 2016, 87, 11E331. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, A.H.; El-Shemi, A.M.; Ghoneim, A.A. Yields of multiply charged ions produced from inner-shell ionization in neutral Ne, Ar and Kr atoms. Radiat. Phys. Chem. 2003, 68, 697–705. [Google Scholar] [CrossRef]
- Fink, R.W.; Jopson, R.C.; Mark, H.; Swift, C.D. Atomic Fluorescence Yields. Rev. Mod. Phys. 1966, 38, 513–540. [Google Scholar] [CrossRef]
- Chaoui, Z.-E.-A.; Goto, K. Auger electron from silicon: Comparison of full Monte Carlo simulations with experiment. Surf. Interface Anal. 2010, 42, 1105–1108. [Google Scholar] [CrossRef]
- Fraser, G.; Abbey, A.; Holland, A.; McCarthy, K.; Owens, A.; Wells, A. The X-ray energy response of silicon Part A. Theory. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1994, 350, 368–378. [Google Scholar] [CrossRef]
- Brigida, M.; Favuzzi, C.; Fusco, P.; Gargano, F.; Giglietto, N.; Giordano, F.; Loparco, F.; Marangelli, B.; Mazziotta, M.N.; Mirizzi, N.; et al. A new Monte Carlo code for full simulation of silicon strip detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 533, 322–343. [Google Scholar] [CrossRef]
- Carlson, T.A. The Nature of Secondary Electrons Created as the Result of Electron Shake-Off and Vacancy Cascades. Radiat. Res. 1975, 64, 53. [Google Scholar] [CrossRef]
- Pham, T.L.; Nguyen, T.V.; A Lowe, J.; Grant, I.P.; Chantler, C.T. Characterization of the copperKβx-ray emission profile: Anab initiomulti-configuration Dirac–Hartree–Fock approach with Bayesian constraints. J. Phys. B At. Mol. Opt. Phys. 2016, 49, 035601. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.A.; Nestor, C.W.; Tucker, T.C.; Malik, F.B.; Nestor, J.C.W. Calculation of Electron Shake-Off for Elements from Z = 2 to 92 with the Use of Self-Consistent-Field Wave Functions. Phys. Rev. 1968, 169, 27–36. [Google Scholar] [CrossRef]
- Carlson, T.A.; Nestor, J.C.W. Calculation of Electron Shake-Off Probabilities as the Result of X-ray Photoionization of the Rare Gases. Phys. Rev. A 1973, 8, 2887–2894. [Google Scholar] [CrossRef]
- Scholze, F.; Rabus, H.; Ulm, G. Mean energy required to produce an electron-hole pair in silicon for photons of energies between 50 and 1500 eV. J. Appl. Phys. 1998, 84, 2926–2939. [Google Scholar] [CrossRef]
- LaPorta, V.; Pietanza, L.D.; Colonna, G. A Monte Carlo code for simulating soft X-ray absorption in pure and two-layer materials. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 636, 67–73. [Google Scholar] [CrossRef]
- Alig, R.C.; Bloom, S.; Struck, C.W. Scattering by ionization and phonon emission in semiconductors. Phys. Rev. B 1980, 22, 5565–5582. [Google Scholar] [CrossRef]
- Mazziotta, M. Electron–hole pair creation energy and Fano factor temperature dependence in silicon. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2008, 584, 436–439. [Google Scholar] [CrossRef]
- Alig, R.C. Scattering by ionization and phonon emission in semiconductors. II. Monte Carlo calculations. Phys. Rev. B 1983, 27, 968–977. [Google Scholar] [CrossRef]
- Fischetti, M.V.; Yoder, P.D.; Khatami, M.M.; Gaddemane, G.; Van De Put, M.L. “Hot electrons in Si lose energy mostly to optical phonons”: Truth or myth? Appl. Phys. Lett. 2019, 114, 222104. [Google Scholar] [CrossRef]
- Fano, U. Ionization Yield of Radiations. II. The Fluctuations of the Number of Ions. Phys. Rev. 1947, 72, 26–29. [Google Scholar] [CrossRef]
- Gao, F.; Campbell, L.W.; Devanathan, R.; Xie, Y.; Corrales, L.R.; Peurrung, A.J.; Weber, W.J. Monte Carlo method for simulating γ-ray interaction with materials: A case study on Si. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2007, 579, 292–296. [Google Scholar] [CrossRef]
- Owens, A.; Peacock, A. Compound semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2004, 531, 18–37. [Google Scholar] [CrossRef]
- Carlson, T.A.; Hunt, W.E.; Krause, M.O. Relative Abundances of Ions Formed as the Result of Inner-Shell Vacancies in Atoms. Phys. Rev. 1966, 151, 41–47. [Google Scholar] [CrossRef]
- Lee, E. Towards the Photonic Efficiency Enhancement of Solar-Selective Absorbers and Si-Based High-Energy X-ray Detectors; Dartmouth College: Hanover, NH, USA, 2021. [Google Scholar]
Shell | Absolute Probability of Shake-Off (%) | Energy Value of Shaken-Off Electron (eV) | Relaxation Energy Er (eV) |
---|---|---|---|
K (1s) | 19.75 | 19.20 | 27.1 |
L1 (2s) | 9.45 | 6.25 | 7.0 |
L2,3 (2p) | 9.70 | 6.55 | 8.0 |
M1 (3s) | 9.65 | 6.55 | 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anagnost, K.M.; Lee, E.; Wang, Z.; Liu, J.; Fossum, E.R. Simulating 50 keV X-ray Photon Detection in Silicon with a Down-Conversion Layer. Sensors 2021, 21, 7566. https://doi.org/10.3390/s21227566
Anagnost KM, Lee E, Wang Z, Liu J, Fossum ER. Simulating 50 keV X-ray Photon Detection in Silicon with a Down-Conversion Layer. Sensors. 2021; 21(22):7566. https://doi.org/10.3390/s21227566
Chicago/Turabian StyleAnagnost, Kaitlin M., Eldred Lee, Zhehui Wang, Jifeng Liu, and Eric R. Fossum. 2021. "Simulating 50 keV X-ray Photon Detection in Silicon with a Down-Conversion Layer" Sensors 21, no. 22: 7566. https://doi.org/10.3390/s21227566
APA StyleAnagnost, K. M., Lee, E., Wang, Z., Liu, J., & Fossum, E. R. (2021). Simulating 50 keV X-ray Photon Detection in Silicon with a Down-Conversion Layer. Sensors, 21(22), 7566. https://doi.org/10.3390/s21227566