Modeling and Parallel Operation of Exchange-Biased Delta-E Effect Magnetometers for Sensor Arrays
Abstract
:1. Introduction
2. Sensor System
3. Array Modeling
3.1. Signal Model
3.2. Definition of Sensitivities
3.3. Noise Model
4. Characterization and Validation of the Signal-and-Noise Model
4.1. Electrical Sensitivity and Admittance Characterization
4.2. Frequency Response of the Sensor
4.3. Validation of the Noise Model
5. Implications for Sensor Arrays
5.1. Influence of the Number of Sensor Elements
5.2. Influence of Resonance Frequency Mismatch
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Equivalent Circuit Model
Appendix B. Transfer Function of the Resonator
Appendix C. System Parameters
Component | Parameter | Value | Parameter | Value |
---|---|---|---|---|
Excitation | 75 Ω | |||
147 MΩ | 208 pF | |||
184 MΩ | 36 pF | |||
295 MΩ | 47.157 pF | |||
663.47 kΩ | 48.725 fF | |||
8.826 kH | ||||
310 MΩ | 48.568 pF | |||
755.96 kΩ | 49.112 fF | |||
8.753 kH | 7676.4 Hz | |||
Amplifier | 5 GΩ | 30 pF |
Appendix D. Implementation of the Model
References
- Lenz, J.; Edelstein, S. Magnetic Sensors and Their Applications. IEEE Sens. J. 2006, 6, 631–649. [Google Scholar] [CrossRef]
- Gleich, B.; Weizenecker, J. Tomographic Imaging Using the Nonlinear Response of Magnetic Particles. Nature 2005, 435, 1214–1217. [Google Scholar] [CrossRef]
- Friedrich, R.-M.; Zabel, S.; Galka, A.; Lukat, N.; Wagner, J.-M.; Kirchhof, C.; Quandt, E.; McCord, J.; Selhuber-Unkel, C.; Siniatchkin, M.; et al. Magnetic Particle Mapping Using Magnetoelectric Sensors as an Imaging Modality. Sci. Rep. 2019, 9, 2086. [Google Scholar] [CrossRef]
- Cohen, D.; Givler, E. Magnetomyography: Magnetic Fields around the Human Body Produced by Skeletal Muscles. Appl. Phys. Lett. 1972, 21, 114–116. [Google Scholar] [CrossRef]
- Zuo, S.; Schmalz, J.; Özden, M.-Ö.; Gerken, M.; Su, J.; Niekiel, F.; Lofink, F.; Nazarpour, K.; Heidari, H. Ultrasensitive Magnetoelectric Sensing System for Pico-Tesla MagnetoMyoGraphy. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 971–984. [Google Scholar] [CrossRef]
- Koch, H. Recent Advances in Magnetocardiography. J. Electrocardiol. 2004, 37, 117–122. [Google Scholar] [CrossRef]
- Fenici, R.; Brisinda, D.; Meloni, A.M. Clinical Application of Magnetocardiography. Expert Rev. Mol. Diagn. 2005, 5, 291–313. [Google Scholar] [CrossRef]
- Kwong, J.S.W.; Leithäuser, B.; Park, J.-W.; Yu, C.-M. Diagnostic Value of Magnetocardiography in Coronary Artery Disease and Cardiac Arrhythmias: A Review of Clinical Data. Int. J. Cardiol. 2013, 167, 1835–1842. [Google Scholar] [CrossRef] [PubMed]
- Duez, L.; Beniczky, S.; Tankisi, H.; Hansen, P.O.; Sidenius, P.; Sabers, A.; Fuglsang-Frederiksen, A. Added Diagnostic Value of Magnetoencephalography (MEG) in Patients Suspected for Epilepsy, Where Previous, Extensive EEG Workup Was Unrevealing. Clin. Neurophysiol. 2016, 127, 3301–3305. [Google Scholar] [CrossRef] [PubMed]
- Fenici, R.; Brisinda, D.; Nenonen, J.; Fenici, P. Phantom Validation of Multichannel Magnetocardiography Source Localization. Pacing and Clin. Electrophysiol. 2003, 26, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Bertero, M.; Piana, M. Inverse problems in biomedical imaging: Modeling and methods of solution. In Complex Systems in Biomedicine; Quarteroni, A., Formaggia, L., Veneziani, A., Eds.; Springer: Milano, Italy, 2006; pp. 1–33. ISBN 978-88-470-0396-5. [Google Scholar]
- Yang, J.; Poh, N. Recent Application in Biometrics; IntechOpen: London, UK, 2011; ISBN 978-953-307-488-7. [Google Scholar]
- Murzin, D.; Mapps, D.J.; Levada, K.; Belyaev, V.; Omelyanchik, A.; Panina, L.; Rodionova, V. Ultrasensitive Magnetic Field Sensors for Biomedical Applications. Sensors 2020, 20, 1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleiner, R.; Koelle, D.; Ludwig, F.; Clarke, J. Superconducting Quantum Interference Devices: State of the Art and Applications. Proc. IEEE 2004, 92, 1534–1548. [Google Scholar] [CrossRef]
- Robbes, D. Highly Sensitive Magnetometers—A Review. Sens. Actuators A Phys. 2006, 129, 86–93. [Google Scholar] [CrossRef]
- Griffith, W.C.; Knappe, S.; Kitching, J. Femtotesla Atomic Magnetometry in a Microfabricated Vapor Cell. Opt. Express 2010, 18, 27167–27172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, C.N.; Schwindt, P.D.D.; Weisend, M. Multi-Sensor Magnetoencephalography with Atomic Magnetometers. Phys. Med. Biol. 2013, 58, 6065–6077. [Google Scholar] [CrossRef] [Green Version]
- Osborne, J.; Orton, J.; Alem, O.; Shah, V. Fully Integrated Standalone Zero Field Optically Pumped Magnetometer for Biomagnetism. In Proceedings of the Steep Dispersion Engineering and Opto-Atomic Precision Metrology XI, San Francisco, CA, USA, 29 January–1 February 2018; Volume 10548, pp. 89–95. [Google Scholar]
- Mhaskar, R.R.; Knappe, S.; Kitching, J. Low-Frequency Characterization of MEMS-Based Portable Atomic Magnetometer. In Proceedings of the 2010 IEEE International Frequency Control Symposium, Newport Beach, CA, USA, 1–4 June 2010; pp. 376–379. [Google Scholar]
- Oelsner, G.; IJsselsteijn, R.; Scholtes, T.; Krüger, A.; Schultze, V.; Seyffert, G.; Werner, G.; Jäger, M.; Chwala, A.; Stolz, R. Integrated Optically Pumped Magnetometer for Measurements within Earth’s Magnetic Field. arXiv 2021, arXiv:2008.01570. [Google Scholar]
- Reermann, J.; Durdaut, P.; Salzer, S.; Demming, T.; Piorra, A.; Quandt, E.; Frey, N.; Höft, M.; Schmidt, G. Evaluation of Magnetoelectric Sensor Systems for Cardiological Applications. Measurement 2018, 116, 230–238. [Google Scholar] [CrossRef]
- Yarar, E.; Salzer, S.; Hrkac, V.; Piorra, A.; Höft, M.; Knöchel, R.; Kienle, L.; Quandt, E. Inverse Bilayer Magnetoelectric Thin Film Sensor. Appl. Phys. Lett. 2016, 109, 022901. [Google Scholar] [CrossRef]
- Tu, C.; Chu, Z.-Q.; Spetzler, B.; Hayes, P.; Dong, C.-Z.; Liang, X.-F.; Chen, H.-H.; He, Y.-F.; Wei, Y.-Y.; Lisenkov, I.; et al. Mechanical-Resonance-Enhanced Thin-Film Magnetoelectric Heterostructures for Magnetometers, Mechanical Antennas, Tunable RF Inductors, and Filters. Materials 2019, 12, 2259. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.W. Magnetostriction and Magnetomechanical Effects. Rep. Prog. Phys. 1955, 18, 184–229. [Google Scholar] [CrossRef]
- Spetzler, B.; Golubeva, E.V.; Müller, C.; McCord, J.; Faupel, F. Frequency Dependency of the Delta-E Effect and the Sensitivity of Delta-E Effect Magnetic Field Sensors. Sensors 2019, 19, 4769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spetzler, B.; Golubeva, E.V.; Friedrich, R.-M.; Zabel, S.; Kirchhof, C.; Meyners, D.; McCord, J.; Faupel, F. Magnetoelastic Coupling and Delta-E Effect in Magnetoelectric Torsion Mode Resonators. Sensors 2021, 21, 2022. [Google Scholar] [CrossRef] [PubMed]
- Reermann, J.; Zabel, S.; Kirchhof, C.; Quandt, E.; Faupel, F.; Schmidt, G. Adaptive Readout Schemes for Thin-Film Magnetoelectric Sensors Based on the Delta-E Effect. IEEE Sens. J. 2016, 16, 4891–4900. [Google Scholar] [CrossRef]
- Osiander, R.; Ecelberger, S.A.; Givens, R.B.; Wickenden, D.K.; Murphy, J.C.; Kistenmacher, T.J. A Microelectromechanical-based Magnetostrictive Magnetometer. Appl. Phys. Lett. 1996, 69, 2930–2931. [Google Scholar] [CrossRef]
- Gojdka, B.; Jahns, R.; Meurisch, K.; Greve, H.; Adelung, R.; Quandt, E.; Knöchel, R.; Faupel, F. Fully Integrable Magnetic Field Sensor Based on Delta-E Effect. Appl. Phys. Lett. 2011, 99, 223502. [Google Scholar] [CrossRef] [Green Version]
- Jahns, R.; Zabel, S.; Marauska, S.; Gojdka, B.; Wagner, B.; Knöchel, R.; Adelung, R.; Faupel, F. Microelectromechanical Magnetic Field Sensor Based on ΔE Effect. Appl. Phys. Lett. 2014, 105, 052414. [Google Scholar] [CrossRef]
- Zabel, S.; Kirchhof, C.; Yarar, E.; Meyners, D.; Quandt, E.; Faupel, F. Phase Modulated Magnetoelectric Delta-E Effect Sensor for Sub-Nano Tesla Magnetic Fields. Appl. Phys. Lett. 2015, 107, 152402. [Google Scholar] [CrossRef]
- Zabel, S.; Reermann, J.; Fichtner, S.; Kirchhof, C.; Quandt, E.; Wagner, B.; Schmidt, G.; Faupel, F. Multimode Delta-E Effect Magnetic Field Sensors with Adapted Electrodes. Appl. Phys. Lett. 2016, 108, 222401. [Google Scholar] [CrossRef]
- Spetzler, B.; Su, J.; Friedrich, R.-M.; Niekiel, F.; Fichtner, S.; Lofink, F.; Faupel, F. Influence of the Piezoelectric Material on the Signal and Noise of Magnetoelectric Magnetic Field Sensors Based on the Delta-E Effect. APL Mater. 2021, 9, 031108. [Google Scholar] [CrossRef]
- Spetzler, B.; Bald, C.; Durdaut, P.; Reermann, J.; Kirchhof, C.; Teplyuk, A.; Meyners, D.; Quandt, E.; Höft, M.; Schmidt, G.; et al. Exchange Biased Delta-E Effect Enables the Detection of Low Frequency PT Magnetic Fields with Simultaneous Localization. Sci. Rep. 2021, 11, 5269. [Google Scholar] [CrossRef]
- Nan, T.; Hui, Y.; Rinaldi, M.; Sun, N.X. Self-Biased 215 MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection. Sci. Rep. 2013, 3, 1985. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Matyushov, A.; Dong, C.; Chen, H.; Lin, H.; Nan, T.; Qian, Z.; Rinaldi, M.; Lin, Y.; Sun, N.X. Ultra-Sensitive NEMS Magnetoelectric Sensor for Picotesla DC Magnetic Field Detection. Appl. Phys. Lett. 2017, 110, 143510. [Google Scholar] [CrossRef]
- Staruch, M.; Matis, B.R.; Baldwin, J.W.; Bennett, S.P.; van’t Erve, O.; Lofland, S.; Bussmann, K.; Finkel, P. Large Non-Saturating Shift of the Torsional Resonance in a Doubly Clamped Magnetoelastic Resonator. Appl. Phys. Lett. 2020, 116, 232407. [Google Scholar] [CrossRef]
- Zhuang, X.; Sing, M.L.C.; Dolabdjian, C.; Wang, Y.; Finkel, P.; Li, J.; Viehland, D. Sensitivity and Noise Evaluation of a Bonded Magneto(Elasto) Electric Laminated Sensor Based on In-Plane Magnetocapacitance Effect for Quasi-Static Magnetic Field Sensing. IEEE Trans. Magn. 2015, 51, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Staruch, M.; Yang, M.-T.; Li, J.F.; Dolabdjian, C.; Viehland, D.; Finkel, P. Frequency Reconfigurable Phase Modulated Magnetoelectric Sensors Using ΔE Effect. Appl. Phys. Lett. 2017, 111, 032905. [Google Scholar] [CrossRef] [Green Version]
- Stutzke, N.A.; Russek, S.E.; Pappas, D.P.; Tondra, M. Low-Frequency Noise Measurements on Commercial Magnetoresistive Magnetic Field Sensors. J. Appl. Phys. 2005, 97, 10Q107. [Google Scholar] [CrossRef]
- Deak, J.G.; Zhou, Z.; Shen, W. Tunneling Magnetoresistance Sensor with PT Level 1/f Magnetic Noise. AIP Adv. 2017, 7, 056676. [Google Scholar] [CrossRef]
- Lukat, N.; Friedrich, R.-M.; Spetzler, B.; Kirchhof, C.; Arndt, C.; Thormählen, L.; Faupel, F.; Selhuber-Unkel, C. Mapping of Magnetic Nanoparticles and Cells Using Thin Film Magnetoelectric Sensors Based on the Delta-E Effect. Sens. Actuators A Phys. 2020, 309, 112023. [Google Scholar] [CrossRef]
- Chu, Z.; Shi, W.; Shi, H.; Chen, Q.; Wang, L.; PourhosseiniAsl, M.J.; Xiao, C.; Xie, T.; Dong, S. A 1D Magnetoelectric Sensor Array for Magnetic Sketching. Adv. Mater. Technol. 2019, 4, 1800484. [Google Scholar] [CrossRef]
- Cuong, T.D.; Viet Hung, N.; Le Ha, V.; Tuan, P.A.; Duong, D.D.; Tam, H.A.; Duc, N.H.; Giang, D.T.H. Giant Magnetoelectric Effects in Serial-Parallel Connected Metglas/PZT Arrays with Magnetostrictively Homogeneous Laminates. J. Sci. Adv. Mater. Devices 2020, 5, 354–360. [Google Scholar] [CrossRef]
- Xi, H.; Lu, M.-C.; Yang, Q.X.; Zhang, Q.M. Room Temperature Magnetoelectric Sensor Arrays For Application of Detecting Iron Profiles in Organs. Sens. Actuators A Phys. 2020, 311, 112064. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Cheng, Z.; Chen, J.; Li, W.; Zhang, S. High Sensitivity Face Shear Magneto-Electric Composite Array for Weak Magnetic Field Sensing. J. Appl. Phys. 2020, 128, 064102. [Google Scholar] [CrossRef]
- Li, H.; Zou, Z.; Yang, Y.; Shi, P.; Wu, X.; Ou-Yang, J.; Yang, X.; Zhang, Y.; Zhu, B.; Chen, S. Microbridge-Structured Magnetoelectric Sensor Array Based on PZT/FeCoSiB Thin Films. IEEE Trans. Magn. 2020, 56, 1–4. [Google Scholar] [CrossRef]
- Kim, H.J.; Wang, S.; Xu, C.; Laughlin, D.; Zhu, J.; Piazza, G. Piezoelectric/Magnetostrictive MEMS Resonant Sensor Array for in-Plane Multi-Axis Magnetic Field Detection. In Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 22–26 January 2017; pp. 109–112. [Google Scholar]
- Lage, E.; Kirchhof, C.; Hrkac, V.; Kienle, L.; Jahns, R.; Knöchel, R.; Quandt, E.; Meyners, D. Exchange Biasing of Magnetoelectric Composites. Nat. Mater. 2012, 11, 523–529. [Google Scholar] [CrossRef]
- Yarar, E.; Hrkac, V.; Zamponi, C.; Piorra, A.; Kienle, L.; Quandt, E. Low Temperature Aluminum Nitride Thin Films for Sensory Applications. AIP Adv. 2016, 6, 075115. [Google Scholar] [CrossRef]
- Durdaut, P.; Penner, V.; Kirchhof, C.; Quandt, E.; Knöchel, R.; Höft, M. Noise of a JFET Charge Amplifier for Piezoelectric Sensors. IEEE Sens. J. 2017, 17, 7364–7371. [Google Scholar] [CrossRef]
- Jahns, R.; Knöchel, R.; Greve, H.; Woltermann, E.; Lage, E.; Quandt, E. Magnetoelectric Sensors for Biomagnetic Measurements. In Proceedings of the 2011 IEEE International Symposium on Medical Measurements and Applications, Bari, Italy, 30–31 May 2011; pp. 107–110. [Google Scholar]
- Durdaut, P.; Reermann, J.; Zabel, S.; Kirchhof, C.; Quandt, E.; Faupel, F.; Schmidt, G.; Knöchel, R.; Höft, M. Modeling and Analysis of Noise Sources for Thin-Film Magnetoelectric Sensors Based on the Delta-E Effect. IEEE Trans. Instrum. Meas. 2017, 66, 2771–2779. [Google Scholar] [CrossRef]
- Durdaut, P.; Rubiola, E.; Friedt, J.-M.; Müller, C.; Spetzler, B.; Kirchhof, C.; Meyners, D.; Quandt, E.; Faupel, F.; McCord, J.; et al. Fundamental Noise Limits and Sensitivity of Piezoelectrically Driven Magnetoelastic Cantilevers. J. Microelectromech. Syst. 2020, 29, 1347–1361. [Google Scholar] [CrossRef]
- Spetzler, B.; Kirchhof, C.; Reermann, J.; Durdaut, P.; Höft, M.; Schmidt, G.; Quandt, E.; Faupel, F. Influence of the Quality Factor on the Signal to Noise Ratio of Magnetoelectric Sensors Based on the Delta-E Effect. Appl. Phys. Lett. 2019, 114, 183504. [Google Scholar] [CrossRef]
- Durdaut, P. Ausleseverfahren Und Rauschmodellierung Für Magnetoelektrische Und Magnetoelastische Sensorsysteme. Ph.D. Thesis, Kiel University, Kiel, Germany, 2019. [Google Scholar]
- Spetzler, B.; Kirchhof, C.; Quandt, E.; McCord, J.; Faupel, F. Magnetic Sensitivity of Bending-Mode Delta-E-Effect Sensors. Phys. Rev. Appl. 2019, 12, 064036. [Google Scholar] [CrossRef]
- Wang, Y.J.; Gao, J.Q.; Li, M.H.; Shen, Y.; Hasanyan, D.; Li, J.F.; Viehland, D. A Review on Equivalent Magnetic Noise of Magnetoelectric Laminate Sensors. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20120455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, L.; Saez, S.; Dolabdjian, C.; Melo, L.G.C.; Yelon, A.; Menard, D. Equivalent Magnetic Noise Limit of Low-Cost GMI Magnetometer. IEEE Sens. J. 2009, 9, 159–168. [Google Scholar] [CrossRef]
- Matyushov, A.D.; Spetzler, B.; Zaeimbashi, M.; Zhou, J.; Qian, Z.; Golubeva, E.V.; Tu, C.; Guo, Y.; Chen, B.F.; Wang, D.; et al. Curvature and Stress Effects on the Performance of Contour-Mode Resonant ΔE Effect Magnetometers. Adv. Mater. Technol. 2021, 6, 2100294. [Google Scholar] [CrossRef]
- Oppenheim, A.V.; Schafer, R.W.; Buck, J.R. Discrete-Time Signal Processing, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1998. [Google Scholar]
- Orfanidis, S.J. Introduction to Signal Processing; Prentice Hall: Hoboken, NJ, USA, 1996; ISBN 978-0-13-240334-4. [Google Scholar]
- Welch, P.D. The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over a Short, Modified Periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spetzler, B.; Wiegand, P.; Durdaut, P.; Höft, M.; Bahr, A.; Rieger, R.; Faupel, F. Modeling and Parallel Operation of Exchange-Biased Delta-E Effect Magnetometers for Sensor Arrays. Sensors 2021, 21, 7594. https://doi.org/10.3390/s21227594
Spetzler B, Wiegand P, Durdaut P, Höft M, Bahr A, Rieger R, Faupel F. Modeling and Parallel Operation of Exchange-Biased Delta-E Effect Magnetometers for Sensor Arrays. Sensors. 2021; 21(22):7594. https://doi.org/10.3390/s21227594
Chicago/Turabian StyleSpetzler, Benjamin, Patrick Wiegand, Phillip Durdaut, Michael Höft, Andreas Bahr, Robert Rieger, and Franz Faupel. 2021. "Modeling and Parallel Operation of Exchange-Biased Delta-E Effect Magnetometers for Sensor Arrays" Sensors 21, no. 22: 7594. https://doi.org/10.3390/s21227594
APA StyleSpetzler, B., Wiegand, P., Durdaut, P., Höft, M., Bahr, A., Rieger, R., & Faupel, F. (2021). Modeling and Parallel Operation of Exchange-Biased Delta-E Effect Magnetometers for Sensor Arrays. Sensors, 21(22), 7594. https://doi.org/10.3390/s21227594