Invisible ECG for High Throughput Screening in eSports
Abstract
:1. Introduction
2. Related Work
3. Proposed Approach
3.1. Methodology
3.2. Data Acquisition
4. Results
4.1. Skin-to-Electrode Impedance
4.2. Rhythm Analysis
4.3. Heartbeat Waveform Morphology
4.4. Effect of Skin Moisturizer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Jenny, S.E.; Manning, R.D.; Keiper, M.C.; Olrich, T.W. Virtual(ly) athletes: Where esports fit within the definition of “sport”. Quest 2017, 69, 1–18. [Google Scholar] [CrossRef]
- Sachs, G. The world of games: Esports from wild west to mainstream. Equity Res. 2018, 1, 12. [Google Scholar]
- Newzoo. Global Esports Market Report; Newzoo: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Kim, Y.J.; Engel, D.; Woolley, A.; Lin, J.; McArthur, N.; Malone, T. What makes a strong team?: Using collective intelligence to predict team performance in league of legends. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, Portland, OR, USA, 25 February–1 March 2017. [Google Scholar]
- Freeman, G.; Wohn, D. Social Support in eSports: Building Emotional and Esteem Support from Instrumental Support Interactions in a Highly Competitive Environment. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play (CHI PLAY ’17), Amsterdam, The Netherlands, 15–18 October 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 435–447. [Google Scholar] [CrossRef]
- Nascimento, J.F.; Costa, M.A.; Costa, I.B.; Marinho, L.B. Profiling successful team behaviors in league of legends. In Proceedings of the 23rd Brazillian Symposium on Multimedia and the Web, Gramado, Brazil, 17–20 October 2017; pp. 261–268. [Google Scholar]
- Research, A.M. Fitness trackers market—Global opportunity analysis and industry forecast, 2017–2023. In Nanophytomedicine; Springer: Singapore, 2018. [Google Scholar]
- Shoemaker, W.C.; Belzberg, H.; Wo, C.C.; Milzman, D.P.; Pasquale, M.D.; Baga, L.; Fuss, M.A.; Fulda, G.J.; Yarbrough, K.; Van DeWater, J.P.; et al. Multicenter study of noninvasive monitoring systems as alternatives to invasive monitoring of acutely ill emergency patients. Chest 1998, 114, 1643–1652. [Google Scholar] [CrossRef] [PubMed]
- Regula, M.; Socha, V.; Kutílek, P.; Socha, L.; Hána, K.; Hanáková, L.; Szabo, S. (Eds.) Study of heart rate as the main stress indicator in aircraft pilots. In Proceedings of the 16th International Conference on Mechatronics-Mechatronika, Brno, Czech Republic, 3–5 December 2014; pp. 639–643. [Google Scholar] [CrossRef]
- Friedl, K.E. Military applications of soldier physiological monitoring. J. Sci. Med. Sport 2018, 21, 1147–1153. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.; Stanton, N.; Revell, K. A Review of the Physical, Psychological and Psychophysiological Effects of Motorsport on Drivers and Their Potential Influences on Cockpit Interface Design. In Proceedings of the 9th International Conference on Applied Human Factors and Ergonomics (AHFE 2017), Orlando, FL, USA, 22–26 July 2018. [Google Scholar] [CrossRef]
- Reid, M.B.; Lightfoot, J.T. The physiology of auto racing. Med. Sci. Sport. Exerc. 2019, 51, 2548–2562. [Google Scholar] [CrossRef] [PubMed]
- Glass, J.; McGregor, C. Towards Player Health Analytics in Overwatch. In Proceedings of the 2020 IEEE 8th International Conference on Serious Games and Applications for Health (SeGAH), Vancouver, BC, Canada, 14 August 2020; pp. 1–5. [Google Scholar] [CrossRef]
- DiFrancisco-Donoghue, J.; Balentine, J.; Schmidt, G.; Zwibel, H. Managing the health of the eSport athlete: An integrated health management model. BMJ Open Sport Exerc. Med. 2019, 5, e000467. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.; Ahmad, S.L.; Hassan, T.; Yuen, K.; Douris, P.; Zwibel, H.; DiFrancisco-Donoghue, J. Physiological and Cognitive Functions Following a Discrete Session of Competitive Esports Gaming. Front. Psychol. 2020, 11, 1030. [Google Scholar] [CrossRef]
- Cruz, I.; Moreira, C.; Poel, M.; Ferreira, H.; Nijholt, A. Kessel Run—A Cooperative Multiplayer SSVEP BCI Game. In Proceedings of the International Conference on Intelligent Technologies for Interactive Entertainment, INTETAIN 2017, Funchal, Portugal, 20 June 2017. [Google Scholar] [CrossRef]
- Reeder, B.; David, A. Health at hand: A systematic review of smart watch uses for health and wellness. J. Biomed. Informat. 2016, 63, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Guillodo, E.; Lemey, C.; Simmonet, M.; Ropars, J.; Berrouiguet, S. Sleep monitoring and wearables: A systematic review of clinical trials and future applications. Preprint 2018. [Google Scholar] [CrossRef]
- Evenson, K.R.; Goto, M.M.; Furberg, R.D. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 159. [Google Scholar] [CrossRef] [Green Version]
- Feehan, L.M.; Geldman, J.; Sayre, E.C.; Park, C.; Ezzat, A.M.; Yoo, J.Y.; Hamilton, C.B.; Li, L.C. Accuracy of fitbit devices: Systematic review and narrative syntheses of quantitative data. JMIR mHealth uHealth 2018, 6, e10527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seppä, V.P.; Väisänen, J.; Kauppinen, P.; Malmivuo, J.; Hyttinen, J. (Eds.) Measuring Respirational Parameters with a Wearable Bioimpedance Device; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Diaz, D.H.; Casas, O.; Pallas-Areny, R. Heart rate detection from single-foot plantar bioimpedance measurements in a weighing scale. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 4 September 2010; pp. 6489–6492. [Google Scholar]
- Drachen, A.; Nacke, L.E.; Yannakakis, G.; Pedersen, A.L. Correlation between heart rate, electrodermal activity and player experience in first-person shooter games. In Proceedings of the 5th ACM SIGGRAPH Symposium on Video Games, Los Angeles, CA, USA, 29 July 2010. [Google Scholar]
- Scholey, A.B.; Moss, M.C.; Neave, N.; Wesnes, K. Cognitive performance, hyperoxia, and heart rate following oxygen administration in healthy young adults. Physiol. Behav. 1999, 67, 783–789. [Google Scholar] [CrossRef]
- Michael, S.; Graham, K.S.; Davis, G.M.O. Cardiac autonomic responses during exercise and post-exercise recovery using heart rate variability and systolic time intervals—A review. Front. Physiol. 2017, 8, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hillebrand, S.; Gast, K.B.; de Mutsert, R.; Swenne, C.A.; Jukema, J.W.; Middeldorp, S.; Rosendaal, F.R.; Dekkers, O.M. Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: Meta-analysis and dose–response meta-regression. Europace 2013, 15, 742–749. [Google Scholar] [CrossRef]
- Porter, A.M.; Goolkasian, P. Video games and stress: How stress appraisals and game content affect cardiovascular and emotion outcomes. Front. Psychol. 2019, 10, 967. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Hong, S.J.; Jung, Y.C.; Park, J.; Kim, I.Y.; Namkoong, K. Altered heart rate variability during gaming in internet gaming disorder. Cyberpsychol. Behav. Soc. Netw. 2018, 21, 259–267. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Henley, B.C.; Shokouhi, M.; Mahajan, A.Y.; Inan, O.T.; Hajjar, I. Cardiovascular response to mental stress in mild cognitive impairment and its association with cerebral perfusion. J. Alzheimers Dis. 2018, 63, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Higginbotham, M.B.; Morris, K.G.; Williams, R.S.; McHale, P.A.; Coleman, R.E.; Cobb, F.R. Regulation of stroke volume during submaximal and maximal upright exercise in normal man. Circ. Res. 1986, 58, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Carreiras, C.; Lourenco, A.; Aidos, H.; Plácido da Silva, H.; Fred, A. Morphological ECG Analysis for Attention Detection. In Proceedings of the IJCCI 2013—5th International Joint Conference on Computational Intelligence, Vilamoura, Portugal, 20–22 September 2013. [Google Scholar]
- Koshy, A.; Koshy, G.M. The Potential of Physiological Monitoring Technologies in Esports. Int. J. eSports 2020, 1. Available online: https://www.ijesports.org/article/22/html (accessed on 22 July 2021).
- Batista, D.; Plácido da Silva, H.; Fred, A.; Moreira, C.; Reis, M.; Ferreira, H.A. Benchmarking of the BITalino biomedical toolkit against an established gold standard. Healthc. Technol. Lett. 2019, 6, 32–36. [Google Scholar] [CrossRef]
- Dos Santos Silva, A.; Almeida, H.; da Silva, H.P.; Oliveira, A. Design and evaluation of a novel approach to invisible electrocardiography (ECG) in sanitary facilities using polymeric electrodes. Sci. Rep. 2021, 11, 6222. [Google Scholar] [CrossRef] [PubMed]
Impedance (kΩ) | 25.0 | 6.1 | 6.7 | 14.8 | 6.0 | 53.8 | 45.2 | 30.2 | 18.9 | 15.6 | 8.6 | 6.3 |
Frequency (Hz) | 26.51 | 31.41 | 44.25 | 57.74 | 75.3 | 80.65 | 94.34 | 105.9 | 136.2 | 148.3 | 176.6 | 193.4 |
Material | QRS (%) | HR (BPM) | HR (BPM) | SDE (%) | p-Value |
---|---|---|---|---|---|
ECG REF | 78.49 ± 2.55 | ||||
Keyboard | 99.99 ± 1.11 | 78.00 ± 5.63 | 0.49 ± 5.05 | 3 ± 0.01 | 0.040 ± 0.010 |
Keyboard/Mouse | 95.83 ± 3.45 | 70.00 ± 5.55 | 8.49 ± 5.14 | 15 ± 2.04 | 0.051 ± 0.011 |
Poincaré | DFA | |||||
---|---|---|---|---|---|---|
Material | SD1 (ms) | SD2 (ms) | S (ms) | SD1/ SD2 | 1 | 2 |
ECG REF | 71.6 ± 19.1 | 114.7 ± 30.8 | 25,830.4 ± 97.3 | 0.6 ± 29.3 | 0.9 ± 0.7 | 1.3 ± 2.7 |
Keyboard | 334.8 ± 123.8 | 438.3 ± 234.8 | 461,055.4 ± 23.9 | 0.8 ± 0.8 | 0.6 ± 0.9 | 0.8 ± 0.6 |
Keyboard/Mouse | 601.8 ± 320.90 | 582.8 ± 178.9 | 1,101,947.5 ± 345.0 | 1.0 ± 1.6 | 0.9 ± 1.99 | 1.0 ± 1.4 |
Material | Keyboard | Keyboard/Mouse | ||
---|---|---|---|---|
Subject | PCC | NRMSE | PCC | NRMSE |
1 | 0.98 ± 0.07 | 19.86 ± 11.07 | 0.78 ± 0.30 | 57.65 ± 25.02 |
3 | 0.81 ± 0.14 | 30.34 ± 16.88 | 0.59 ± 0.05 | 26.16 ± 6.53 |
4 | 0.95 ± 0.30 | 51.65 ± 6.42 | 0.82 ± 0.14 | 35.06 ± 24.97 |
5 | 0.97 ± 0.25 | 49.89 ± 3.48 | 0.36 ± 0.07 | 25.69 ± 3.98 |
6 | 0.99 ± 0.00 | 21.45 ± 3.01 | 0.88 ± 0.15 | 26.16 ± 10.71 |
7 | 0.88 ± 0.02 | 23.45 ± 12.83 | 0.82 ± 0.29 | 24.75 ± 24.63 |
± | 0.91 ± 0.14 | 31.07 ± 7.8 | 0.82 ± 0.23 | 32.19 ± 11.02 |
Material | Moisturizer A | Moisturizer B | |
---|---|---|---|
ECG REF | HR (BPM) ( ± ) | 95.40 ± 7.663 | 95.15 ± 8.448 |
QRS(%) | 78.87 | 69.83 | |
Keyboard | HR (BPM) ( ± ) | 95.92 ± 8.475 | 103.09 ± 5.672 |
QRS(%) | 77.03 | 75.14 | |
HR (BPM) | 0.54 ± 0.06 | 7.94 ± 0.8 | |
PCC | 0.95 ± 0.08 | 0.63 ± 0.19 | |
NRMSE | 3.187 ± 0.99 | 5.467 ± 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, A.S.; Correia, M.V.; Silva, H.P. Invisible ECG for High Throughput Screening in eSports. Sensors 2021, 21, 7601. https://doi.org/10.3390/s21227601
Silva AS, Correia MV, Silva HP. Invisible ECG for High Throughput Screening in eSports. Sensors. 2021; 21(22):7601. https://doi.org/10.3390/s21227601
Chicago/Turabian StyleSilva, Aline Santos, Miguel Velhote Correia, and Hugo Plácido Silva. 2021. "Invisible ECG for High Throughput Screening in eSports" Sensors 21, no. 22: 7601. https://doi.org/10.3390/s21227601
APA StyleSilva, A. S., Correia, M. V., & Silva, H. P. (2021). Invisible ECG for High Throughput Screening in eSports. Sensors, 21(22), 7601. https://doi.org/10.3390/s21227601