Spectral Diffractive Lenses for Measuring a Modified Red Edge Simple Ratio Index and a Water Band Index
Abstract
:1. Introduction
2. Synthesis of Spectral Diffractive Lenses
3. Experiments with a Tunable Laser
4. Experiments with a Broadband Source
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Gold, K.M.; Townsend, P.A.; Chlus, A.; Herrmann, I.; Couture, J.J.; Larson, E.R.; Gevens, A.J. Hyperspectral Measurements Enable Pre-Symptomatic Detection and Differentiation of Contrasting Physiological Effects of Late Blight and Early Blight in Potato. Remote Sens. 2020, 12, 286. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Pu, R.; Huang, W.; Yuan, L.; Luo, J.; Wang, J. Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses. Field Crop. Res. 2012, 134, 165–174. [Google Scholar] [CrossRef]
- Babichev, A.N.; Monastyrsky, V.A.; Olgarenko, V.Ig.; Skidanov, R.V.; Podlipnov, V.V. Control system of a rotating wide-angle irrigating machine for precision irrigation. Methods Enhanc. Irrig. Farming Eff. 2019, 1, 195–199. [Google Scholar]
- Podlipnov, V.V.; Schedrin, V.N.; Babichev, A.N.; Vasiliev, S.M.; Blank, V.A. Experimental detection of soil moisture using hyperspectral imagery. Comput. Optics 2018, 42, 877–884. [Google Scholar] [CrossRef]
- Mahlein, A.-K.; Rumpf, T.; Welke, P.; Dehne, H.-W.; Plümer, L.; Steiner, U.; Oerke, E.-C. Development of spectral indices for detecting and identifying plant diseases. Remote. Sens. Environ. 2013, 128, 21–30. [Google Scholar] [CrossRef]
- Zheng, Q.; Huang, W.; Cui, X.; Dong, Y.; Shi, Y.; Ma, H.; Liu, L. Identification of Wheat Yellow Rust Using Optimal Three-Band Spectral Indices in Different Growth Stages. Sensors 2019, 19, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirzadifar, A.; Bajwa, S.; Nowatzki, J.; Shojaeiarani, J. Development of spectral indices for identifying glyphosate-resistant weeds. Comput. Electron. Agric. 2020, 170, 105276. [Google Scholar] [CrossRef]
- Le Maire, G.; François, C.; Dufrêne, E. Towards universal broad leaf chlorophyll indices using PROSPECT simulated data-base and hyperspectral reflectance measurements. Remote Sens. Environ. 2004, 89, 1–28. [Google Scholar] [CrossRef]
- Penuelas, J.; Gamon, J.; Fredeen, A.; Merino, J.; Field, C. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Hernández-Clemente, R.; Navarro-Cerrillo, R.M.; Zarco-Tejada, P.J. Carotenoid content estimation in a heterogeneous co-nifer forest using narrow-band indices and PROSPECT+DART simulations. Remote Sens. Environ. 2012, 127, 298–315. [Google Scholar] [CrossRef]
- Haboudane, D.; Tremblay, N.; Miller, J.R.; Vigneault, P. Remote estimation of crop chlorophyll content using spectral indi-ces derived from hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 423–437. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, W.; Luo, J.; Huang, L.; Zhou, X. Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis. Comput. Electron. Agric. 2017, 141, 171–180. [Google Scholar] [CrossRef]
- Geomatics. Available online: https://sovzond.ru/upload/iblock/f46/2011_02_017.pdf (accessed on 20 July 2021).
- Cherepanov, A.S.; Druzhinina, E.G. Spectral properties of vegetation and vegetation indices. Geomatics 2009, 3, 28–32. [Google Scholar]
- Antonov, V.N.; Sladkikh, L.A. Crop condition monitoring and prognostication of summer wheat yield based on remote sensing data. Geomatics 2009, 4, 50–53. [Google Scholar]
- Cai, F.; Lu, W.; Shi, W.; He, S. A mobile device-based imaging spectrometer for environmental monitoring by attaching a lightweight small module to a commercial digital camera. Sci. Rep. 2017, 7, 15602. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.; Yang, J.; Wu, D.; Zhao, Q.; Gan, Y.; Fu, D.; Yang, F.; Liu, H.; Bai, Q.; Hu, B. Design and Test of Portable Hyperspectral Imaging Spectrometer. J. Sens. 2017, 2017, 7692491. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, Z.; Wang, S.; Huang, Y.; Lin, G.; Li, Z.; Yang, X. Atmospheric Aerosol Multiband Synthesis Imaging Spec-trometer. Appl. Spectrosc. 2018, 73, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Mu, T.; Han, F.; Bao, D.; Zhang, C.; Liang, R. Compact snapshot optically replicating and remapping imaging spectrometer (ORRIS) using a focal plane continuous variable filter. Opt. Lett. 2019, 44, 1281–1284. [Google Scholar] [CrossRef]
- Blank, V.; Skidanov, R.V. Hyperspectrometer based on a harmonic lens with diffraction grating. J. Phys. Conf. Ser. 2018, 1096, 012003. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-S.; Yan, Y.-J.; Shih, R.-S.; Chang, C.-H.; Chen, T.-C.; Chen, Y.-C.; Huang, C.C.; Lin, S.-G.; Ou-Yang, M. Development and verification of the coaxial heterogeneous hyperspectral system for the Wax Apple tree. In Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand, 20–23 May 2019. [Google Scholar]
- Yang, C.; Shi, K.; Edwards, P.; Liu, Z. Demonstration of a PDMS based hybrid grating and Fresnel lens (G-Fresnel) device. Opt. Express 2010, 18, 23529–23534. [Google Scholar] [CrossRef] [PubMed]
- Vinogradov, A.N.; Egorov, V.V.; Kalinin, A.P.; Rodionov, A.I.; Rodionov, I.D.; Rodionov, I.P. Onboard narrow-angle hy-perspectrometer operating in the retargeting mode. J. Optl. Technol. 2019, 86, 114–118. [Google Scholar] [CrossRef]
- Feng, L.; Zhou, J.; Jing, J.; Wei, L.; Li, Y.; He, X.; Yang, L. Hyperspectrometer based on curved prism fabrication for space application. Opt. Fabr. Test. Metrol. 2018, 10692, 106921H. [Google Scholar] [CrossRef]
- Blank, V.; Skidanov, R. Imaging hyperspectrometer-consol. Procedia Eng. 2017, 201, 129–134. [Google Scholar] [CrossRef]
- Voropai, E.S.; Gulis, I.M.; Kupreev, A.G.; Kaplevskii, K.N.; Kostyukevich, A.G.; Radko, A.E.; Shevchenko, K.A. Multi-object spectrometer with micromirror array. J. Appl. Spectrosc. 2010, 77, 285–292. [Google Scholar] [CrossRef]
- McCarthy, A.; Barton, K.; Lewis, L. Low-Cost Multispectral Imager. J. Chem. Educ. 2020, 97, 3892–3898. [Google Scholar] [CrossRef]
- Naranjio, T.R.; Franz, A.L. Experimental demonstration of multi-spectral imaging of vegetation with a diffractive plenoptic camera. Proc. SPIE 2020, 11396, 113960R. [Google Scholar] [CrossRef]
- Soifer, V.A.; Doskolovich, L.L.; Golovashkin, D.L.; Kazanskiy, N.L.; Kharitonov, S.I.; Khonina, S.N.; Kotlyar, V.V.; Pavelyev, V.S.; Skidanov, R.V.; Solovyev, V.S.; et al. Methods for Computer Design of Diffractive Optical Elements; Soifer, V.A., Ed.; John Willey & Sons, Inc.: Hoboken, NJ, USA, 2002. [Google Scholar]
- Doskolovich, L.L.; Skidanov, R.V.; Bezus, E.A.; Ganchevskaya, S.V.; Bykov, D.A.; Kazanskiy, N.L. Design of diffractive lenses operating at several wavelengths. Opt. Express 2020, 28, 11705–11720. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blank, V.; Skidanov, R.; Doskolovich, L.; Kazanskiy, N. Spectral Diffractive Lenses for Measuring a Modified Red Edge Simple Ratio Index and a Water Band Index. Sensors 2021, 21, 7694. https://doi.org/10.3390/s21227694
Blank V, Skidanov R, Doskolovich L, Kazanskiy N. Spectral Diffractive Lenses for Measuring a Modified Red Edge Simple Ratio Index and a Water Band Index. Sensors. 2021; 21(22):7694. https://doi.org/10.3390/s21227694
Chicago/Turabian StyleBlank, Veronika, Roman Skidanov, Leonid Doskolovich, and Nikolay Kazanskiy. 2021. "Spectral Diffractive Lenses for Measuring a Modified Red Edge Simple Ratio Index and a Water Band Index" Sensors 21, no. 22: 7694. https://doi.org/10.3390/s21227694
APA StyleBlank, V., Skidanov, R., Doskolovich, L., & Kazanskiy, N. (2021). Spectral Diffractive Lenses for Measuring a Modified Red Edge Simple Ratio Index and a Water Band Index. Sensors, 21(22), 7694. https://doi.org/10.3390/s21227694