Estimation of Lower Limb Kinematics during Squat Task in Different Loading Using sEMG Activity and Deep Recurrent Neural Networks
Abstract
:1. Introduction
- First, train a deep-RNN that can predict lower limb kinematics independent of intensity of the movement.
- Second, inter subject prediction for evaluation the generalizability of the network.
- Third, comparison of a deep-RNN performance with a common classical network in task performance.
2. Materials and Methods
2.1. Data Collection
2.2. Data Pre-Processing
2.3. PCA Analysis
2.4. Feature Extraction
2.4.1. Wavelet Decomposition
2.4.2. Cross-Correlation Analysis
2.4.3. Kinematics Estimation
LSTM Network
Multilayer Perceptron (MLP) Network
Model Selection and Network Accuracy Criteria
3. Results
4. Discussion
- Prediction regardless of the intensity of movement and loading condition
- Inter-subject prediction.
- The number of subjects and the volume of dataset.
- The number of muscles that are considered as network input.
- Proposed networks (In most reviewed paper, other networks have been used to compare the performance of the proposed network. Here, only the performance of the proposed network has been reported.).
- Target kinematics parameter.
- Network evaluation criteria and reported results.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ziegler-Graham, K.; MacKenzie, E.J.; Ephraim, P.L.; Travison, T.G.; Brookmeyer, R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 2008, 89, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Nolan, L.; Wit, A.; Dudziñski, K.; Lees, A.; Lake, M.; Wychowañski, M. Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture 2003, 17, 142–151. [Google Scholar] [CrossRef]
- Sanderson, D.J.; Martin, P.E. Joint kinetics in unilateral below-knee amputee patients during running. Arch. Phys. Med. Rehabil. 1996, 77, 1279–1285. [Google Scholar] [CrossRef]
- Burke, M.J.; Roman, V.; Wright, V. Bone and joint changes in lower limb amputees. Ann. Rheum. Dis. 1978, 37, 252–254. [Google Scholar] [CrossRef] [Green Version]
- Lemaire, E.D.; Fisher, F.R. Osteoarthritis and elderly amputee gait. Arch. Phys. Med. Rehabil. 1994, 75, 1094–1099. [Google Scholar] [CrossRef]
- Ephraim, P.L.; Wegener, S.T.; MacKenzie, E.J.; Dillingham, T.R.; Pezzin, L.E. Phantom pain, residual limb pain, and back pain in amputees: Results of a national survey. Arch. Phys. Med. Rehabil. 2005, 86, 1910–1919. [Google Scholar] [CrossRef] [PubMed]
- Devan, H.; Tumilty, S.; Smith, C. Physical activity and lower-back pain in persons with traumatic transfemoral amputation: A national cross-sectional survey. J. Rehabil. Res. Dev. 2012, 49, 1457–1466. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, J.; Gaine, W.J.; Buckley, J.G.; Rankine, J.J.; Adams, J. Chronic low back pain in traumatic lower limb amputees. Clin. Rehabil. 2005, 19, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yuan, K.; Zhu, J.; Wang, L. Walk the walk: A lightweight active transtibial prosthesis. IEEE Robot. Autom. Mag. 2015, 22, 80–89. [Google Scholar] [CrossRef]
- Herr, H.M.; Grabowski, A.M. Bionic ankle-foot prosthesis normalizes walking gait for persons with leg amputation. Proc. R. Soc. B Biol. Sci. 2012, 279, 457–464. [Google Scholar] [CrossRef] [Green Version]
- Grabowski, A.M.; D’Andrea, S. Effects of a powered ankle-foot prosthesis on kinetic loading of the unaffected leg during level-ground walking. J. Neuroeng. Rehabil. 2013, 10, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, D.A.; Sienko, S.E. Biomechanics of below-knee amputee gait. J. Biomech. 1988, 21, 361–367. [Google Scholar] [CrossRef]
- Wolpaw, J.R.; Birbaumer, N.; Heetderks, W.J.; McFarland, D.J.; Peckham, P.H.; Schalk, G.; Donchin, E.; Quatrano, L.A.; Robinson, C.J.; Vaughan, T.M.; et al. Brain-computer interface technology: A review of the first international meeting. IEEE Trans. Rehabil. Eng. 2000, 8, 164–173. [Google Scholar] [CrossRef]
- Teramae, T.; Noda, T.; Morimoto, J. EMG-based model predictive control for physical human--robot interaction: Application for assist-as-needed control. IEEE Robot. Autom. Lett. 2017, 3, 210–217. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Zeng, N.; Du, M.; Zhang, Q. Prediction of knee joint moment by surface electromyography of the antagonistic and agonistic muscle pairs. IEEE Access 2019, 7, 82320–82328. [Google Scholar] [CrossRef]
- Au, S.; Berniker, M.; Herr, H. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits. Neural Netw. 2008, 21, 654–666. [Google Scholar] [CrossRef] [PubMed]
- Hoover, C.D.; Fulk, G.D.; Fite, K.B. Stair ascent with a powered transfemoral prosthesis under direct myoelectric control. IEEE/ASME Trans. Mechatron. 2012, 18, 1191–1200. [Google Scholar] [CrossRef]
- Nolan, L.; Lees, A. Touch-down and take-off characteristics of the long jump performance of world level above-and below-knee amputee athletes. Ergonomics 2000, 43, 1637–1650. [Google Scholar] [CrossRef] [PubMed]
- Kars, C.; Hofman, M.; Geertzen, J.H.B.; Pepping, G.-J.; Dekker, R. Participation in sports by lower limb amputees in the Province of Drenthe, The Netherlands. Prosthet. Orthot. Int. 2009, 33, 356–367. [Google Scholar] [CrossRef] [Green Version]
- Halsne, E.G.; Waddingham, M.G.; Hafner, B.J. Long-term activity in and among persons with transfemoral amputation. J. Rehabil. Res. Dev. 2013, 50, 515–530. [Google Scholar] [CrossRef] [PubMed]
- Langford, J.; Dillon, M.P.; Granger, C.L.; Barr, C. Physical activity participation amongst individuals with lower limb amputation. Disabil. Rehabil. 2019, 41, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Bragaru, M.; Dekker, R.; Geertzen, J.H.B.; Dijkstra, P.U. Amputees and sports. Sport. Med. 2011, 41, 721–740. [Google Scholar] [CrossRef] [PubMed]
- Deans, S.A.; McFadyen, A.K.; Rowe, P.J. Physical activity and quality of life: A study of a lower-limb amputee population. Prosthet. Orthot. Int. 2008, 32, 186–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schultz, A.E.; Kuiken, T.A. Neural interfaces for control of upper limb prostheses: The state of the art and future possibilities. PM&R 2011, 3, 55–67. [Google Scholar]
- Lei, Z. An upper limb movement estimation from electromyography by using BP neural network. Biomed. Signal Process. Control 2019, 49, 434–439. [Google Scholar] [CrossRef]
- Lu, R.; Li, Z.; Su, C.-Y.; Xue, A. Development and learning control of a human limb with a rehabilitation exoskeleton. IEEE Trans. Ind. Electron. 2013, 61, 3776–3785. [Google Scholar] [CrossRef]
- Farmer, S.; Silver-Thorn, B.; Voglewede, P.; Beardsley, S.A. Within-socket myoelectric prediction of continuous ankle kinematics for control of a powered transtibial prosthesis. J. Neural Eng. 2014, 11, 56027. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, X.; Cheng, Y.; Xi, N. Surface EMG based continuous estimation of human lower limb joint angles by using deep belief networks. Biomed. Signal Process. Control 2018, 40, 335–342. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Miran, S.M.; Xi, X.; Xue, A. Surface electromyography based estimation of knee joint angle by using correlation dimension of wavelet coefficient. IEEE Access 2019, 7, 60522–60531. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Xi, X.; Miran, S.M.; Xue, A. Estimation and Correlation Analysis of Lower Limb Joint Angles Based on Surface Electromyography. Electronics 2020, 9, 556. [Google Scholar] [CrossRef] [Green Version]
- Keles, A.D.; Yucesoy, C.A. Development of a neural network based control algorithm for powered ankle prosthesis. J. Biomech. 2020, 113, 110087. [Google Scholar] [CrossRef] [PubMed]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial networks. arXiv. 2014. Available online: https://arxiv.org/abs/1406.2661 (accessed on 10 January 2020).
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef]
- Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv 2014, arXiv:1412.3555. Available online: https://arxiv.org/abs/1412.3555 (accessed on 10 January 2020).
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Xia, P.; Hu, J.; Peng, Y. EMG-based estimation of limb movement using deep learning with recurrent convolutional neural networks. Artif. Organs 2018, 42, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yu, S.; Ma, K.; Huang, S.; Li, G.; Cai, S.; Xie, L. A continuous estimation model of upper limb joint angles by using surface electromyography and deep learning method. IEEE Access 2019, 7, 174940–174950. [Google Scholar] [CrossRef]
- Lalitharatne, T.D.; Hayashi, Y.; Teramoto, K.; Kiguchi, K. A study on effects of muscle fatigue on EMG-based control for human upper-limb power-assist. In Proceedings of the 2012 IEEE 6th International Conference on Information and Automation for Sustainability, Beijing, China, 27–29 September 2012; pp. 124–128. [Google Scholar]
- Zangene, A.R.; Abbasi, A. Continuous Estimation of Knee Joint Angle during Squat from sEMG using Artificial Neural Networks. In Proceedings of the 2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME), Tehran, Iran, 26–27 November 2020; pp. 75–78. [Google Scholar]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Burhan, N.; Kasno, M.A.; Ghazali, R. Feature extraction of surface electromyography (sEMG) and signal processing technique in wavelet transform: A review. In Proceedings of the 2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Shah Alam, Malaysia, 22–22 October 2016; pp. 141–146. [Google Scholar]
- Phinyomark, A.; Limsakul, C.; Phukpattaranont, P. Application of wavelet analysis in EMG feature extraction for pattern classification. Meas. Sci. Rev. 2011, 11, 45–52. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ma, X.; Liu, Y.; Song, Q.; Wang, C. Continuous estimation of knee joint angle based on surface electromyography using a long short-term memory neural network and time-ad2.42.vanced feature. Sensors 2020, 20, 4966. [Google Scholar] [CrossRef] [PubMed]
Subject | LSTM | MLP | ||
---|---|---|---|---|
Knee Joint | Ankle Joint | Knee Joint | Ankle Joint | |
Best | 5.537 | 5.716 | 8.577 | 8.721 |
Worse | 7.932 | 8.120 | 10.42 | 10.70 |
Average | 6.774 ± 1.197 | 6.961 ± 1.200 | 9.489 ± 0.922 | 9.705 ± 0.978 |
Subject | LSTM | MLP | ||
---|---|---|---|---|
Knee Joint | Ankle Joint | Knee Joint | Ankle Joint | |
Best Result | 0.954 | 0.941 | 0.910 | 0.901 |
Worst Result | 0.927 | 0.916 | 0.879 | 0.865 |
Average | 0.938 ± 0.0135 | 0.922 ± 0.012 | 0.897 ± 0.013 | 0.882 ± 0.019 |
Number of Subjects | Proposed Model | Input of the Model | Target Parameters | Accuracy Criteria and Performance | |
---|---|---|---|---|---|
Present Study | 19 | (1) LSTM | VM, RF, BF, TA and MG | (a) Ankle (θ) (b) Knee (θ) | 1-(a) RMSE: 6.961, r: 0.922 (92.2%) 1-(b) RMSE: 6.774, r: 0.938 (93.8%) |
Xia et al. (2018) [36] | 8 | (1) CNN (2) RCNN | BB, TB, AD, PD and MD | Hand position in 3D | (1) R2: 77.6% (2) R2: 90.3% |
Chen et al. (2018) [28] | 6 | (1) BP | RF, VL, VM, SR, AT, ST, BF, MG, VG and SL | (a) Ankle (θ) (b) Knee (θ) (c) Hip (θ) |
1-(a) RMSE: 2.45, r: 0.96 1-(b) RMSE: 3.96, r: 0.97 1-(c) RMSE: 3.58, r: 0.95 |
Chen et al. (2019) [37] | 7 | (1) LSTM | BR, BB, TB, PD, MD, AD and PM | Shoulder | (1) RMSE: 6.1833 (1) R2: 0.8556 |
Ma et al. (2020) [44] | 5 | (1) LSTM | RF, BF, ST, GC, SM, SR, MG, TA | Knee (θ) | (1) ρ: 98.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zangene, A.R.; Abbasi, A.; Nazarpour, K. Estimation of Lower Limb Kinematics during Squat Task in Different Loading Using sEMG Activity and Deep Recurrent Neural Networks. Sensors 2021, 21, 7773. https://doi.org/10.3390/s21237773
Zangene AR, Abbasi A, Nazarpour K. Estimation of Lower Limb Kinematics during Squat Task in Different Loading Using sEMG Activity and Deep Recurrent Neural Networks. Sensors. 2021; 21(23):7773. https://doi.org/10.3390/s21237773
Chicago/Turabian StyleZangene, Alireza Rezaie, Ali Abbasi, and Kianoush Nazarpour. 2021. "Estimation of Lower Limb Kinematics during Squat Task in Different Loading Using sEMG Activity and Deep Recurrent Neural Networks" Sensors 21, no. 23: 7773. https://doi.org/10.3390/s21237773
APA StyleZangene, A. R., Abbasi, A., & Nazarpour, K. (2021). Estimation of Lower Limb Kinematics during Squat Task in Different Loading Using sEMG Activity and Deep Recurrent Neural Networks. Sensors, 21(23), 7773. https://doi.org/10.3390/s21237773