Small Split-Ring Resonators as Efficient Antennas for Remote LoRa IOT Systems—A Path to Reduce Physical Interference
Abstract
:1. Introduction
1.1. Miniature Antennas to Support IOT Systems
1.2. Split-Ring Resonator Overview
- The half-ring perimeter is modified to include the gap by removing the capacitance contribution from the gap by writing the perimeter as .
- An additional capacitance associated with both the split-ring gaps is added where:
2. Methods
2.1. Model Implementation
2.2. Antenna Fabrication
2.3. Characterisation
3. Results
3.1. Characterisation of Preliminary Designs
3.2. Uncertainty Analysis of Resonant Frequency in SRR Designs
3.3. Orientation Dependence of SRR Antennas
3.4. Characterisation of Driven Designs with Ports Added
3.5. LoRa Testing of SRR Antennas
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tan, Y.K. Energy Harvesting Autonomous Sensor Systems: Design, Analysis, and Practical Implementation, 1st ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Augustin, A.; Yi, J.; Clausen, T.; Townsley, W. A Study of LoRa: Long Range & Low Power Networks for the Internet of Things. Sensors 2016, 16, 1466. [Google Scholar]
- Marqués, R.; Medina, F.; Rafii-El-Idrissi, R. Role of bianisotropy in negative permeability and left handed metamaterials. Phys. Rev. B 2002, 65, 144440. [Google Scholar] [CrossRef]
- Marques, R.; Mesa, F.; Martel, J.; Medina, F. Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design—Theory and experiments. IEEE Trans. Antennas Propag. 2003, 51, 2572–2581. [Google Scholar] [CrossRef] [Green Version]
- LoRa Alliance Technical Committee Regional Parameters Workgroup. LoRaWAN™ 1.0.3 Regional Parameters. July 2018. Available online: https://lora-alliance.org/wp-content/uploads/2020/11/lorawan_regional_parameters_v1.0.3reva_0.pdf (accessed on 9 November 2021).
- Wheeler, H.A. Small Antennas. IEEE Trans. Antennas Propag. 1975, 23, 462–469. [Google Scholar] [CrossRef]
- Banu, M.; Rathinasabapathy, V. Review on miniature and mm- wave antennas for lora & 5g wireless communication. Int. J. Pure Appl. Math. 2018, 119, 1007–1013. [Google Scholar]
- Lizzi, L.; Ferrero, F. Use of ultra-narrow band miniature antennas for internet-of-things applications. Electron. Lett. 2015, 51, 1964–1966. [Google Scholar] [CrossRef]
- Smith, D.R.; Padilla, W.J.; Vier, D.C.; Nemat-Nasser, S.C.; Schultz, S. Composite Medium with Simultaneously Negative Permeability and Permittivity. Phys. Rev. Lett. 2000, 84, 4184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuffanelli, S.; Zamora, G.; Aguila, P.; Paredes, F.; Martin, F.; Bonache, J. Analysis of the Split Ring Resonator (SRR) Antenna Applied to Passive UHF-RFID Tag Design. IEEE Trans. Antennas Propag. 2015, 64, 856–864. [Google Scholar] [CrossRef]
- Alici, K.B.; Ozbay, E. Electrically small split ring resonator antennas. J. Appl. Phys. 2007, 101, 083104. [Google Scholar] [CrossRef]
- El Mrabet, O.; Aznabet, M.; Falcone, F.; Rmili, H.; Floch, J.-M.; Drissi, M.; Essaaidi, M. A compact split ring resonator antenna for wireless communication systems. Prog. Electromagn. Res. Lett. 2013, 36, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Senior, D.E.; Whalen, J.J.; Yoon, Y.-K. Electrically small tunable split ring resonator antenna. In Proceedings of the 2010 IEEE Antennas and Propagation Society International Symposium, Toronto, ON, Canada, 11–17 July 2010; pp. 1–4. [Google Scholar]
- Singh, N.; Singh, S.; Kumar, H. A study on applications of meta-material based antennas. In Proceedings of the 2011 3rd International Conference on Electronics Computer Technology, Kanyakumari, India, 10 April 2011; Volume 1, pp. 192–196. [Google Scholar]
- Barati, H.; Fakheri, M.H.; Abdolali, A. Experimental demonstration of metamaterial-assisted antenna beam deflection through folded transformation optics. J. Opt. 2018, 20, 085101. [Google Scholar] [CrossRef]
- Dong, J.; Li, X. UHF near-field tags design based on split ring resonator. In Proceedings of the Asia-Pacific Microwave Conference, Melbourne, VIC, Australia, 5–8 December 2011; pp. 1794–1797. [Google Scholar]
- Wang, R.; Yuan, B.; Wang, G.; Yi, F. Efficient Design of Directive Patch Antennas in Mobile Communications Using Metamaterials. Int. J. Infrared Millim. Waves 2007, 28, 639–649. [Google Scholar] [CrossRef]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef] [Green Version]
- Martin, F.; Bonache, J.; Falcone, F.; Sorolla, M.; Marqués, R. Split ring resonator-based left-handed coplanar waveguide. Appl. Phys. Lett. 2003, 83, 4652–4654. [Google Scholar] [CrossRef] [Green Version]
- Marqués, R.; Martín, F.; Sorolla, M. Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Bahl, I.; Bhartia, P. Transmission lines and lumped elements. In Microwave Solid State Circuit Design, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2003; pp. 25–77. [Google Scholar]
- Isakov, D.; Stevens, C.J.; Castles, F.; Grant, P.S. A Split Ring Resonator Dielectric Probe for Near-Field Dielectric Imaging. Sci. Rep. 2017, 7, 2038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alrayes, N.; Hussein, M.I. Metamaterial-based sensor design using split ring resonator and Hilbert fractal for biomedical application. Sens. Bio-Sens. Res. 2021, 31, 100395. [Google Scholar] [CrossRef]
- Balanis, C.A. Antenna Theory Analysis and Design, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Huitema, L.; Delaveaud, C.; D’Errico, R. Impedance and Radiation Measurement Methodology for Ultra Miniature Antennas. IEEE Trans. Antennas Propag. 2014, 62, 3463–3473. [Google Scholar] [CrossRef]
- Agio, M.; Alù, A. Optical Antennas; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Guide 98-3:2008 Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995), ISO/IEC, ISO/TMBG Technical Management Board, 2008-10. 2008. Available online: https://www.iso.org/standard/50461.html (accessed on 9 November 2021).
- Petajajarvi, J.; Mikhaylov, K.; Roivainen, A.; Hanninen, T.; Pettissalo, M. On the coverage of LPWANs: Range evaluation and channel attenuation model for LoRa technology. In Proceedings of the 2015 14th International Conference on ITS Telecommunications (ITST), Copenhagen, Denmark, 2–4 December 2015; pp. 55–59. [Google Scholar]
- Low Power Long Range Transceiver Module Model, No.:RFM95W/96W/98W. Hope RF. 2018. Available online: https://www.hoperf.com/modules/lora/RFM95.html (accessed on 9 November 2021).
- Efron, B.; Gong, G. A Leisurely Look at the Bootstrap, the Jackknife, and Cross-Validation. Am. Stat. 1983, 37, 36–48. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Jamil, K.; Telba, A.; Alzabidi, M.A.; Sebak, A.R. Design and Development of a Wideband Planar Yagi Antenna Using Tightly Coupled Directive Element. Micromachines 2020, 11, 975. [Google Scholar] [CrossRef] [PubMed]
- Rodrıguez, B.; Schandy, J.; Gonzalez, J.P.; Steinfeld, L.; Silveira, F. Fabrication and characterization of a directional SPIDA antenna for wireless sensor networks. In Proceedings of the 2017 IEEE URUCON, Montevideo, Uruguay, 23–25 October 2017; pp. 1–4. [Google Scholar] [CrossRef]
433 MHz Design Series | 915 MHz Design Series | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Design | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 |
Modelled frequency (f0) | 437.5 | 481.2 | 393.7 | 440.5 | 439.7 | 927.3 | 972.5 | 880.6 | 1002.1 | 917.1 |
external radius (rext) | 28.9 | 27.15 | 31.02 | 21.40 | 29.95 | 12.00 | 11.63 | 12.42 | 9.41 | 15.85 |
trace width (c) | 6.20 | 6.20 | 6.20 | 3.00 | 6.92 | 2.60 | 2.60 | 2.60 | 1.50 | 5.00 |
separation (d) | 0.31 | 0.31 | 0.31 | 0.13 | 0.31 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 |
mean radius (r0) | 22.55 | 20.80 | 24.67 | 18.34 | 22.88 | 9.34 | 8.97 | 9.76 | 7.85 | 10.79 |
gap (g) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Diameter: λ/4 monopole | 0.34 | 0.35 | 0.33 | 0.25 | 0.35 | 0.30 | 0.30 | 0.29 | 0.25 | 0.39 |
433 MHz Series | SRR Design 1 | SRR Design 2 | SRR Design 3 | SRR Design 4 | SRR Design 5 | rms | mean |
---|---|---|---|---|---|---|---|
Experimental | 413.6 | 457 | 373.4 | 427.8 | 413.9 | 30.2 | 417.1 |
Predicted | 437.5 | 481.2 | 393.7 | 440.5 | 439.7 | 31.0 | 438.5 |
Prediction error | 5.78% | 5.30% | 5.44% | 2.96% | 6.23% | 1.27% | 5.14% |
915 MHz Series | SRR Design 1 | SRR Design 2 | SRR Design 3 | SRR Design 4 | SRR Design 5 | rms | mean |
Experimental | 904.6 | 938.2 | 851.5 | 1032.4 | 856.8 | 73.9 | 916.7 |
Predicted | 927.3 | 972.5 | 880.6 | 1002.1 | 917.1 | 47.8 | 939.9 |
Prediction error | 2.51% | 3.65% | 3.41% | −2.94% | 7.04% | 3.61% | 2.74% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rohan, C.; Audet, J.; Keating, A. Small Split-Ring Resonators as Efficient Antennas for Remote LoRa IOT Systems—A Path to Reduce Physical Interference. Sensors 2021, 21, 7779. https://doi.org/10.3390/s21237779
Rohan C, Audet J, Keating A. Small Split-Ring Resonators as Efficient Antennas for Remote LoRa IOT Systems—A Path to Reduce Physical Interference. Sensors. 2021; 21(23):7779. https://doi.org/10.3390/s21237779
Chicago/Turabian StyleRohan, Cameron, Jacques Audet, and Adrian Keating. 2021. "Small Split-Ring Resonators as Efficient Antennas for Remote LoRa IOT Systems—A Path to Reduce Physical Interference" Sensors 21, no. 23: 7779. https://doi.org/10.3390/s21237779
APA StyleRohan, C., Audet, J., & Keating, A. (2021). Small Split-Ring Resonators as Efficient Antennas for Remote LoRa IOT Systems—A Path to Reduce Physical Interference. Sensors, 21(23), 7779. https://doi.org/10.3390/s21237779