Level-K Classification from EEG Signals Using Transfer Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. EEG Preprocessing and Feature Extraction Using CWT
2.4. Software Tools and Work Environments
3. Results
3.1. Cognitive Level Classification Using a Single EEG Channel
3.2. Cognitive Level Classification Using Multiple EEG Channels
- —The prediction model of the ith channel,
- —ith channel model input—CWT image of the EEG record from the ith channel,
- —The model weight of the ith channel.
- —The predicted probability vector by the weighted model for input x (which is a CWT image).
- (x)—Actual label of input x (CWT image).
- —the number of observations in the dataset.
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Ethical Statements
Appendix A. Symlet Wavelet Functions
Appendix B. Tacit Coordination Game List
Game Number | Option 1 | Option 2 | Option 3 | Option 4 |
---|---|---|---|---|
1 | Water | Beer | Wine | Whisky |
2 | Tennis | Volleyball | Football | Chess |
3 | Blue | Gray | Green | Red |
4 | Iron | Steel | Plastic | Bronze |
5 | Ford | Ferrari | Jaguar | Porsche |
6 | 1 | 8 | 5 | 16 |
7 | Haifa | Tel-Aviv | Jerusalem | Netanya |
8 | Spinach | Carrot | Lettuce | Pear |
9 | London | Paris | Rome | Madrid |
10 | Hazel | Cashew | Almond | Peanut |
11 | Strawberry | Melon | Banana | Mango |
12 | Noodles | Pizza | Hamburger | Sushi |
Appendix C. Training Tasks Game List
Game Number | Option 1 | Option 2 | Option 3 | Option 4 |
---|---|---|---|---|
1 | Sapphire | Glass | Emerald | Diamond |
2 | Lion | Panther | Frog | Tiger |
3 | Boat | Helicopter | Bicycle | Plane |
4 | Thursday | Tuesday | Saturday | Sunday |
5 | 2019 | 2000 | 1995 | 1997 |
Appendix D. Classification Using Classical Machine Learning Models
Predicted Classes | True Positive Rate | False Negative Rate | ||||
---|---|---|---|---|---|---|
Resting State (CHT Does Not Exist) L = [1;0;0] | Picking (CHT = 0) L = [0;1;0] | Coordination (CHT > 0) L = [0;0;1] | ||||
True Classes | Resting state (CHT does not exist) L = [1;0;0] | 520 | 49 | 31 | 86.67% | 13.33% |
Picking (CHT = 0) L = [0;1;0] | 23 | 65 | 32 | 54.16% | 45.84% | |
Coordination (CHT > 0) L = [0;0;1] | 5 | 42 | 73 | 60.83% | 39.17% | |
Positive Predicted Value | 94.89% | 41.67 % | 53.67 % | Total Prediction Accuracy (658/820) 80.24% | ||
False Discovery Rate | 1.51% | 58.33% | 46.33% |
Appendix E. The Effect of Model Complexity on Classification Results
Electrode/Architecture | (Fp1) | (F7) | (Fp2) | (F8) | (F3) | (F4) |
---|---|---|---|---|---|---|
1 layer | precision | precision | precision | precision | precision | precision |
56.10% (92/164) | 52.15% (85/163) | 61.36% (81/132) | 56.11% (78/139) | 68.18% (90/132) | 64.93% (87/134) | |
Recall | Recall | Recall | Recall | Recall | Recall | |
76.66%—(92/120) | 68.33%—(82/120) | 67.50%—(81/120) | 65.00%—(78/120) | 75.00%—(90/120) | 72.50%—(87/120) | |
f1 score = 0.6479 | f1 score = 0.6007 | f1 score = 0.6429 | f1 score = 0.6023 | f1 score = 0.7143 | f1 score = 0.6851 | |
2 layers | precision | precision | precision | precision | precision | precision |
58.17% (89/153) | 59.57% (84/141) | 59.71% (83/139) | 57.66% (79/137) | 66.66% (92/138) | 64.23% (88/137) | |
Recall | Recall | Recall | Recall | Recall | Recall | |
74.17%—(89/120) | 70.00%—(84/120) | 69.17%—(83/120) | 65.83%—(79/120) | 76.66%—(92/120) | 73.33%—(88/120) | |
f1 score = 0.6520 | f1 score = 0.6437 | f1 score = 0.6409 | f1 score = 0.6148 | f1 score = 0.7131 | f1 score = 0.6848 | |
3 layers | precision | precision | precision | precision | precision | precision |
49.67% (75/151) | 60.87% (84/138) | 59.29% (83/140) | 56.30% (76/135) | 66.66% (88/132) | 63.70% (86/135) | |
Recall | Recall | Recall | Recall | Recall | Recall | |
62.50%—(75/120) | 70.00%—(84/120) | 69.17%—(83/120) | 63.33%—(76/120) | 73.33%—(88/120) | 71.66%—(86/120) | |
f1 score = 0.5535 | f1 score = 0.6512 | f1 score = 0.6385 | f1 score = 0.5961 | f1 score = 0.6984 | f1 score = 0.6745 | |
4 layers | precision | precision | precision | precision | precision | precision |
55.88% (76/136) | 52.32% (79/151) | 57.35% (78/136) | 53.64% (81/151) | 70.43% (81/115) | 63.70%—(79/125) | |
Recall | Recall | Recall | Recall | Recall | Recall | |
63.33%—(76/120) | 65.83%—(79/120) | 65.00%—(78/120) | 67.50%—(81/120) | 67.50%—(81/120) | 65.83%—(79/120) | |
f1 score = 0.5938 | f1 score = 0.5830 | f1 score = 0.6094 | f1 score = 0.5978 | f1 score = 0.6894 | f1 score = 0.6449 |
References
- Schelling, T.C. The Strategy of Conflict; Harvard University Press: Cambridge, MA, USA, 1960. [Google Scholar]
- Zuckerman, I.; Kraus, S.; Rosenschein, J.S. Using focal point learning to improve human-machine tacit coordination. Auton. Agents Multi. Agent Syst. 2011, 22, 289–316. [Google Scholar] [CrossRef] [Green Version]
- Bacharach, M.; Stahl, D.O. Variable-Frame Level-n Theory. Games Econ. Behav. 2000, 32, 220–246. [Google Scholar] [CrossRef]
- Bardsley, N.; Mehta, J.; Starmer, C.; Sugden, R. Explaining Focal Points: Cognitive Hierarchy Theory versus Team Reasoning. Econ. J. 2009, 120, 40–79. [Google Scholar] [CrossRef] [Green Version]
- Rascovsky, K.; Clark, R.; McMillan, C.T.; Khella, M.C.; Grossman, M. The neural basis for establishing a focal point in pure coordination games. Soc. Cogn. Affect. Neurosci. 2011, 7, 881–887. [Google Scholar]
- Sugden, R. A Theory of Focal Points. Econ. J. 1995, 105, 533–550. [Google Scholar] [CrossRef]
- Faillo, M.; Smerilli, A.; Sugden, R. The Roles of Level-k and Team Reasoning in Solving Coordination Games; University of Trento: Trento, Italy, 2013. [Google Scholar]
- Gold, N.; Colman, A.M. Team Reasoning and the Rational Choice of Payoff-Dominant Outcomes in Games. Topoi 2018, 39, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizrahi, D.; Zuckerman, I.; Laufer, I. Using a Stochastic Agent Model to Optimize Performance in Divergent Interest Tacit Coordination Games. Sensors 2020, 20, 7026. [Google Scholar] [CrossRef]
- Jiang, Y.; Wu, D.; Deng, Z.; Qian, P.; Wang, J.; Wang, G.; Chung, F.-L.; Choi, K.-S.; Wang, S. Seizure classification from EEG signals using transfer learning, semi-supervised learning and TSK fuzzy system. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 2270–2284. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Jung, T.-P. Improving EEG-based emotion classification using conditional transfer learning. Front. Hum. Neurosci. 2017, 11, 334. [Google Scholar] [CrossRef]
- Fahimi, F.; Zhang, Z.; Boon Goh, W.; Lee, T.-S.; Ang, K.K.; Guan, C. Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI. J. Neural Eng. 2019, 16, 026007. [Google Scholar] [CrossRef] [Green Version]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. The Effect of Individual Coordination Ability on Cognitive-Load in Tacit Coordination Games. In Proceedings of the NeuroIS Retreat 2020; Davis, F., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A., Fischer, T., Eds.; Springer Cham: Manhattan, NY, USA; Vienna, Austria, 2020. [Google Scholar]
- Renard, Y.; Lotte, F.; Gibert, G.; Congedo, M.; Maby, E.; Delannoy, V.; Bertrand, O.; Le´cuyer, A. Openvibe: An open-source software platform to design, test, and use brain–computer interfaces in real and virtual environments. Presence Teleoperators Virtual Environ. 2010, 19, 35–53. [Google Scholar] [CrossRef] [Green Version]
- Gartner, M.; Grimm, S.; Bajbouj, M. Frontal midline theta oscillations during mental arithmetic: Effects of stress. Front. Behav. Neurosci. 2015, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vico Fallani, F.; Nicosia, V.; Sinatra, R.; Astolfi, L.; Cincotti, F.; Mattia, D.; Wilke, C.; Doud, A.; Latora, V.; He, B.; et al. Defecting or not defecting: How to “read” human behavior during cooperative games by EEG measurements. PLoS ONE 2010, 5, e14187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boudewyn, M.; Roberts, B.M.; Mizrak, E.; Ranganath, C.; Carter, C.S. Prefrontal transcranial direct current stimulation (tDCS) enhances behavioral and EEG markers of proactive control. Cogn. Neurosci. 2019, 10, 57–65. [Google Scholar] [CrossRef]
- Moliadze, V.; Sierau, L.; Lyzhko, E.; Stenner, T.; Werchowski, M.; Siniatchkin, M.; Hartwigsen, G. After-effects of 10 Hz tACS over the prefrontal cortex on phonological word decisions. Brain Stimul. 2019, 12, 1464–1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. Topographic Analysis of Cognitive Load in Tacit Coordination Games Based on Electrophysiological Measurements. In Proceedings of the NeuroIS Retreat 2021; Springer: Manhattan, NY, USA; Vienna, Austria, 2021. [Google Scholar]
- Mallat, S. A Wavelet Tour of Signal Processing; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Wang, X.; Guanghong, G.; Li, N. Automated recognition of epileptic EEG states using a combination of symlet wavelet processing, gradient boosting machine, and grid search optimizer. Sensors 2019, 19, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoodin, Z.; Jalalludin, N.S.; Mansor, W.; Lee, K.Y.; Mohamad, N.B. Selection of Symlets wavelet function order for EEG signal feature extraction in children with dyslexia. In Proceedings of the 2015 IEEE Student Symposium in Biomedical Engineering & Sciences (ISSBES), Shah Alam, Malaysia, 4 November 2015; pp. 113–117. [Google Scholar]
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, D.W.; Gotman, J. Correlation of high-frequency oscillations with the sleep–wake cycle and cognitive activity in humans. Neuroscience 1999, 94, 1005–1018. [Google Scholar] [CrossRef]
- Ray, W.J.; Cole, H.W. EEG activity during cognitive processing: Influence of attentional factors. Int. J. Psychophysiol. 1985, 3, 43–48. [Google Scholar] [CrossRef]
- Tani, R.; Kashimori, Y. Coordination of top-down influence on V1 responses by interneurons and brain rhythms. Biosystems 2021, 104452. [Google Scholar] [CrossRef]
- Galar, M.; Fernández, A.; Barrenechea, E.; Bustince, H.; Herrera, F. An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes. Pattern Recognit. 2011, 44, 1761–1776. [Google Scholar] [CrossRef]
- Joutsijoki, H.; Juhola, M. Comparing the one-vs-one and one-vs-all methods in benthic macroinvertebrate image classification. In Proceedings of the International Workshop on Machine Learning and Data Mining in Pattern Recognition; Springer: Berlin, Heidelberg, 2011; pp. 399–413. [Google Scholar]
- Huang, Z.; Pan, Z.; Lei, B. Transfer learning with deep convolutional neural network for SAR target classification with limited labeled data. Remote Sens. 2017, 9, 907. [Google Scholar] [CrossRef] [Green Version]
- Ng, H.-W.; Nguyen, V.D.; Vonikakis, V.; Winkler, S. Deep learning for emotion recognition on small datasets using transfer learning. In Proceedings of the ACM on International Conference on Multimodal Interaction, Seattle, WA, USA, 9–13 November 2015; pp. 443–449. [Google Scholar]
- Singla, A.; Bertino, E.; Verma, D. Overcoming the lack of labeled data: Training intrusion detection models using transfer learning. In Proceedings of the 2019 IEEE International Conference on Smart Computing, Washington, DC, USA, 12–15 June 2019; pp. 69–74. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2019; pp. 248–255. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K. Andrew Zisserman Very deep convolutional networks for large-scale image recognition. arXiv Prepr. 2014, 1409, 1556. [Google Scholar]
- Tsung, F.; Zhang, K.; Cheng, L.; Song, Z. Statistical transfer learning: A review and some extensions to statistical process control. Qual. Eng. 2018, 30, 115–128. [Google Scholar] [CrossRef]
- Ho, Y.; Wookey, S. The real-world-weight cross-entropy loss function: Modeling the costs of mislabeling. IEEE Access 2019, 8, 4806–4813. [Google Scholar] [CrossRef]
- Muppidi, M.; Rad, P.; Agaian, S.S.; Jamshidi, M. Image segmentation by multi-level thresholding using genetic algorithm with fuzzy entropy cost functions. In Proceedings of the International Conference on Image Processing Theory, Tools and Applications (IPTA), Orleans, France, 9–13 November 2015; pp. 143–148. [Google Scholar]
- Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Harik, G.R.; Lobo, F.G.; Goldberg, D.E. The compact genetic algorithm. IEEE Trans. Evol. Comput. 1999, 3, 287–297. [Google Scholar] [CrossRef] [Green Version]
- van Son, D.; de Rover, M.; De Blasio, F.M.; van der Does, W.; Barry, R.J.; Putman, P. Electroencephalography theta/beta ratio covaries with mind wandering and functional connectivity in the executive control network. Ann. N. Y. Acad. Sci. 2019, 1452, 52–64. [Google Scholar] [CrossRef]
- van Son, D.; De Blasio, F.M.; Fogarty, J.S.; Angelidis, A.; Barry, R.J.; Putman, P. Frontal EEG theta/beta ratio during mind wandering episodes. Biol. Psychol. 2019, 140, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. Collectivism-individualism: Strategic behavior in tacit coordination games. PLoS ONE 2020, 15, e0226929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, T.H.; Lobel, S.A.; Mcleod, P.L. Effects of ethnic group cultural differences on cooperative and competitive behavior on a group task. Acad. Manag. J. 1991, 34, 827–847. [Google Scholar]
- Mizrahi, D.; Laufer, I.; Zuckerman, I.; Zhang, T. The effect of culture and social orientation on Player’s performances in tacit coordination games. In Proceedings of the International Conference on Brain Informatics; Springer: Arlington, TX, USA, 2018; pp. 437–447. [Google Scholar]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. The Effect of Expected Revenue Proportion and Social Value Orientation Index on Players’ Behavior in Divergent Interest Tacit Coordination Games. In Proceedings of the International Conference on Brain Informatics; Springer: Cham, Switzerland, 2021; pp. 25–34. [Google Scholar]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. Individual strategic profiles in tacit coordination games. J. Exp. Theor. Artif. Intell. 2020, 33, 1–16. [Google Scholar] [CrossRef]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. Modeling Individual Tacit Coordination Abilities. In Proceedings of the International Conference on Brain Informatics; Springer: Haikou, China, 2019; pp. 29–38. [Google Scholar]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. The Effect of Loss-Aversion on Strategic Behaviour of Players in Divergent Interest Tacit Coordination Games. In Proceedings of the International Conference on Brain Informatics; Springer: Padova, Italy, 2020; pp. 41–49. [Google Scholar]
- Liu, W.; Song, S.; Wu, C. Impact of loss aversion on the newsvendor game with product substitution. Int. J. Prod. Econ. 2013, 141, 352–359. [Google Scholar] [CrossRef]
- Bacharach, M. Interactive team reasoning: A contribution to the theory of cooperation. Res. Econ. 1999, 53, 117–147. [Google Scholar] [CrossRef] [Green Version]
- Colman, A.M.; Gold, N. Team reasoning: Solving the puzzle of coordination. Psychon. Bull. Rev. 2018, 25, 1770–1783. [Google Scholar] [CrossRef] [Green Version]
- Costa-Gomes, M.A.; Crawford, V.P.; Iriberri, N. Comparing models of strategic thinking in Van Huyck, Battalio, and Beil’s coordination games. J. Eur. Econ. Assoc. 2009, 7, 365–376. [Google Scholar] [CrossRef]
- Michel, C.M.; Murray, M.M.; Lantz, G.; Gonzalez, S.; Spinelli, L.; Peralta, R.G. de EEG source imaging. Neurophysiology 2004, 115, 2195–2222. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Marqui, R.D.; Michel, C.M.; Lehmann, D. Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 1994, 18, 49–65. [Google Scholar] [CrossRef]
- Kraus, S. Predicting human decision-making: From prediction to action. In Proceedings of the 6th International Conference on Human-Agent Interaction, Southampton, UK, 15–18 December 2018; p. 1. [Google Scholar]
- Zuckerman, I.; Kraus, S.; Rosenschein, J.S. The adversarial activity model for bounded rational agents. Auton. Agents Multi. Agent Syst. 2012, 24, 374–409. [Google Scholar] [CrossRef]
- Mizrahi, D.; Laufer, I.; Zuckerman, I. Predicting focal point solution in divergent interest tacit coordination games. J. Exp. Theor. Artif. Intell. 2021, 1–21. [Google Scholar] [CrossRef]
- Shensa, M.J. The Discrete Wavelet Transform: Wedding the a Trous and Mallat Algorithms. IEEE Trans. Signal Process. 1992, 40, 2464–2482. [Google Scholar] [CrossRef] [Green Version]
- Rioul, O.; Duhamel, P. Fast algorithms for discrete and continuous wavelet transforms. IEEE Trans. Inf. theory 1992, 38, 569–586. [Google Scholar] [CrossRef] [Green Version]
- Jensen, A.; la Cour-Harbo, A. Ripples in Mathematics: The Discrete Wavelet Transform; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
Channel Number (Name) | 1 (Fp1) | 2 (F7) | 5 (Fp2) | 6 (F8) | 9 (F3) | 13 (F4) |
---|---|---|---|---|---|---|
Model precision—resting state | 94.62% (528/558) | 93.15% (517/555) | 92.02% (531/577) | 94.33% (516/547) | 98.62% (571/579) | 99.65 (576/578) |
Model precision—picking (Level-K = 0) | 59% (70/118) | 51.63% (63/122) | 57.25% (75/131) | 53.90% (83/154) | 65.89% (85/129) | 64.06% (82/128) |
Model precision—coordination (Level-K > 0) | 56.10% (92/164) | 52.15% (85/163) | 61.36% (81/132) | 56.11% (78/139) | 68.18% (90/132) | 64.93% (87/134) |
Total model accuracy | 82.14% (690/840) | 79.16% (665/840) | 82.14% (690/840) | 80.59% (677/840) | 88.81% (746/840) | 88.69% (745/840) |
Channel Notation | (Fp1) | (F7) | (Fp2) | (F8) | (F3) | (F4) |
Calculated Weight | 0.1216 | 0.0013 | 0.1553 | 0.0108 | 0.4153 | 0.2957 |
Predicted Classes | True Positive Rate | False Negative Rate | ||||
---|---|---|---|---|---|---|
Resting State (CHT Does Not Exist) L = (1;0;0) | Picking (CHT = 0) L = (0;1;0) | Coordination (CHT > 0) L = (0;0;1) | ||||
True Classes | Resting state (CHT does not exist) L = (1;0;0) | 589 | 11 | 0 | 98.17% | 1.83% |
Picking (CHT = 0) L = (0;1;0) | 3 | 89 | 28 | 74.16% | 25.84% | |
Coordination (CHT > 0) P = (0;0;1) | 0 | 28 | 92 | 76.67% | 23.33% | |
Positive Predicted Value | 99.49% | 69.53% | 72.44 % | Total Prediction Accuracy (770/840) 91.66% | ||
False Discovery Rate | 1.51% | 30.47% | 27.56% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizrahi, D.; Zuckerman, I.; Laufer, I. Level-K Classification from EEG Signals Using Transfer Learning. Sensors 2021, 21, 7908. https://doi.org/10.3390/s21237908
Mizrahi D, Zuckerman I, Laufer I. Level-K Classification from EEG Signals Using Transfer Learning. Sensors. 2021; 21(23):7908. https://doi.org/10.3390/s21237908
Chicago/Turabian StyleMizrahi, Dor, Inon Zuckerman, and Ilan Laufer. 2021. "Level-K Classification from EEG Signals Using Transfer Learning" Sensors 21, no. 23: 7908. https://doi.org/10.3390/s21237908
APA StyleMizrahi, D., Zuckerman, I., & Laufer, I. (2021). Level-K Classification from EEG Signals Using Transfer Learning. Sensors, 21(23), 7908. https://doi.org/10.3390/s21237908