RM-ADR: Resource Management Adaptive Data Rate for Mobile Application in LoRaWAN
Abstract
:1. Introduction
- The proposed RM-ADR collects the packet transmission information and send it to the NS inside the LoRa frame header. Furthermore, the RM-ADR at the ED side allocates SF and TP based on the retransmission remaining, resulting in gaining connectivity with GW.
- RM-ADR at the NS side make use of the packet transmission information and use the received power to assign both SF and TP to mobile end devices, resulting in a low packet loss arriving under the sensitivity thresholds at the GW.
- RM-ADR at NS side greatly increases the efficiency of the Packet Delivery Ratio (PDR) by adapting itself to the varying conditions of the channels. Therefore, it enhances the convergence period when compared to state-of-the-art approaches.
- Additionally, the proposed RM-ADR at NS side can help lower the energy consumption by reducing the retransmissions.
2. Related Work
2.1. Packet Delivery Ratio (PDR) Enhancement
2.2. Mitigating the Impact of Interference
2.3. ADR Enhancement
2.4. Convergence Period Enhancement
3. Working of the Proposed RM-ADR
3.1. RM-ADR at ED Side
Algorithm 1: The proposed RM-ADR at the ED side. |
3.2. RM-ADR at NS Side
Algorithm 2: Resource management for mobile end devices. |
3.3. Integration of the RM-ADR LoRaWAN
4. Experimental Analysis of the Proposed RM-ADR
4.1. Simulation Environment
4.2. Performance Analysis
4.2.1. Over All Network Performance
4.2.2. Average Energy Consumption
4.2.3. Convergence Period
4.2.4. Final Sf Use by EDs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gomez, C.; Veras, J.C.; Vidal, R.; Casals, L.; Paradells, J. A sigfox energy consumption model. Sensors 2019, 19, 681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalapati, S. Comparison Of LPWA Technologies And Realizable Use Cases. 2018. Available online: https://www.nctatechnicalpapers.com/Paper/2018/2018-comparison-of-lpwa-technologies-and-realizable-use-cases (accessed on 22 August 2021).
- Farhad, A.; Kim, D.H.; Kim, B.H.; Mohammed, A.F.Y.; Pyun, J.Y. Mobility-Aware Resource Assignment to IoT Applications in Long-Range Wide Area Networks. IEEE Access 2020, 8, 186111–186124. [Google Scholar] [CrossRef]
- Siddiqi, T.R.; Ning, H.; Ping, H.; Mahmood, Z. DPCA: Data prioritization and capacity assignment in wireless sensor networks. IEEE Access 2016, 5, 14991–15000. [Google Scholar] [CrossRef]
- ETSI. System Reference Document (SRdoc); Technical Characteristics for Low Power Wide Area Networks and Chirp Spread Spectrum (LPWAN-CSS) Operating in the UHF Spectrum below 1 GHz; ETSI TR 103 526 V1.1.1 (2018-04). 2018. Available online: https://www.etsi.org/deliver/etsi_tr/103500_103599/103526/01.01.01_60/tr_103526v010101p.pdf (accessed on 11 November 2021).
- Li, S.; Raza, U.; Khan, A. How Agile is the Adaptive Data Rate Mechanism of LoRaWAN. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 206–212. [Google Scholar]
- SEMTECH. LoRaWAN® Mobile Applications: Blind ADR. Available online: https://lora-developers.semtech.com/uploads/documents/files/LoRaWAN_Mobile_Apps-Blind_ADR_Downloadable.pdf (accessed on 11 November 2021).
- Magrin, D.; Centenaro, M.; Vangelista, L. Performance evaluation of LoRa networks in a smart city scenario. In Proceedings of the IEEE International Conference on communications (ICC), Paris, France, 21–25 May 2017; pp. 1–7. [Google Scholar]
- Magrin, D.; Capuzzo, M.; Zanella, A. A Thorough Study of LoRaWAN Performance Under Different Parameter Settings. IEEE Internet Things J. 2019, 7, 116–127. [Google Scholar] [CrossRef] [Green Version]
- Farhad, A.; Kim, D.H.; Pyun, J.Y. Resource allocation to massive internet of things in lorawans. Sensors 2020, 20, 2645. [Google Scholar] [CrossRef] [PubMed]
- Reynders, B.; Wang, Q.; Tuset-Peiro, P.; Vilajosana, X.; Pollin, S. Improving reliability and scalability of lorawans through lightweight scheduling. IEEE Internet Things J. 2018, 5, 1830–1842. [Google Scholar] [CrossRef]
- Cuomo, F.; Campo, M.; Caponi, A.; Bianchi, G.; Rossini, G.; Pisani, P. EXPLoRa: Extending the performance of LoRa by suitable spreading factor allocations. In Proceedings of the 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Singapore, 4–8 December 2017; pp. 1–8. [Google Scholar]
- Bianchi, G.; Cuomo, F.; Garlisi, D.; Tinnirello, I. Capture aware sequential waterfilling for LoraWAN adaptive data rate. arXiv 2019, arXiv:1907.12360. [Google Scholar]
- Cuomo, F.; Gámez, J.C.C.; Maurizio, A.; Scipione, L.; Campo, M.; Caponi, A.; Bianchi, G.; Rossini, G.; Pisani, P. Towards traffic-oriented spreading factor allocations in LoRaWAN systems. In Proceedings of the 2018 17th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), Capri, Italy, 20–22 June 2018; pp. 1–8. [Google Scholar]
- Farhad, A.; Kim, D.; Sthapit, P.; Pyun, J. Interference-Aware Spreading Factor Assignment Scheme for the Massive LoRaWAN Network. In Proceedings of the 2019 International Conference on Electronics, Information, and Communication (ICEIC), Auckland, New Zealand, 22–25 January 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Irio, L.; Oliveira, R. Modeling the Interference caused to a LoRaWAN Gateway due to Uplink Transmissions. In Proceedings of the 2019 Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), Zagreb, Croatia, 2–5 July 2019; pp. 336–340. [Google Scholar]
- Hoeller, A.; Souza, R.D.; Alves, H.; López, O.L.A.; Montejo-Sánchez, S.; Pellenz, M.E. Optimum LoRaWAN configuration under Wi-SUN interference. IEEE Access 2019, 7, 170936–170948. [Google Scholar] [CrossRef]
- Aggarwal, S.; Nasipuri, A. Improving Scalability of LoRaWAN Networks by Spreading Factor Distribution. In Proceedings of the SoutheastCon 2021, Atlanta, GA, USA, 10–13 March 2021; pp. 1–7. [Google Scholar]
- Coutaud, U.; Heusse, M.; Tourancheau, B. LoRa Channel Characterization for Flexible and High Reliability Adaptive Data Rate in Multiple Gateways Networks. Computers 2021, 10, 44. [Google Scholar] [CrossRef]
- Lin, K.; Hao, T. Experimental Link Quality Analysis for LoRa-based Wireless Underground Sensor Networks. IEEE Internet Things J. 2020, 8, 6565–6577. [Google Scholar] [CrossRef]
- Lin, K.; Hao, T.; Zheng, W.; He, W. Analysis of LoRa Link Quality for Underwater Wireless Sensor Networks: A Semi-empirical Study. In Proceedings of the 2019 IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 10–13 December 2019; pp. 120–122. [Google Scholar]
- Di Renzone, G.; Parrino, S.; Peruzzi, G.; Pozzebon, A. LoRaWAN in Motion: Preliminary Tests for Real Time Low Power Data Gathering from Vehicles. In Proceedings of the 2021 IEEE International Workshop on Metrology for Automotive (MetroAutomotive), Bologna, Italy, 1–2 July 2021; pp. 232–236. [Google Scholar]
- Li, L.; Ren, J.; Zhu, Q. On the application of LoRa LPWAN technology in Sailing Monitoring System. In Proceedings of the 2017 13th Annual Conference on Wireless On-demand Network Systems and Services (WONS), Jackson, WY, USA, 21–24 February 2017; pp. 77–80. [Google Scholar]
- Ferrari, P.; Sisinni, E.; Carvalho, D.F.; Depari, A.; Signoretti, G.; Silva, M.; Silva, I.; Silva, D. On the use of LoRaWAN for the Internet of Intelligent Vehicles in Smart City scenarios. In Proceedings of the 2020 IEEE Sensors Applications Symposium (SAS), Kuala Lumpur, Malaysia, 9–11 March 2020; pp. 1–6. [Google Scholar]
- Klaina, H.; Guembe, I.P.; Lopez-Iturri, P.; Astrain, J.J.; Azpilicueta, L.; Aghzout, O.; Alejos, A.V.; Falcone, F. Aggregator to electric vehicle LoRaWAN based communication analysis in vehicle-to-grid systems in smart cities. IEEE Access 2020, 8, 124688–124701. [Google Scholar] [CrossRef]
- Peruzzo, A.; Vangelista, L. A power efficient adaptive data rate algorithm for LoRaWAN networks. In Proceedings of the 2018 21st International Symposium on Wireless Personal Multimedia Communications (WPMC), Chiang Rai, Thailand, 25–28 November 2018; pp. 90–94. [Google Scholar]
- Farhad, A.; Kim, D.H.; Kwon, D.; Pyun, J.Y. An Improved Adaptive Data Rate for LoRaWAN Networks. In Proceedings of the 2020 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Seoul, Korea, 1–3 November 2020; pp. 1–4. [Google Scholar]
- Farhad, A.; Kim, D.H.; Pyun, J.Y. R-ARM: Retransmission-Assisted Resource Management in LoRaWAN for the Internet of Things. IEEE Internet Things J. 2021. [Google Scholar] [CrossRef]
- Finnegan, J.; Farrell, R.; Brown, S. Analysis and Enhancement of the LoRaWAN Adaptive Data Rate Scheme. IEEE Internet Things J. 2020, 7, 7171–7180. [Google Scholar] [CrossRef]
- Farhad, A.; Kim, D.H.; Subedi, S.; Pyun, J.Y. Enhanced LoRaWAN Adaptive Data Rate for Mobile Internet of Things Devices. Sensors 2020, 20, 6466. [Google Scholar] [CrossRef] [PubMed]
- Feltrin, L.; Buratti, C.; Vinciarelli, E.; De Bonis, R.; Verdone, R. LoRaWAN: Evaluation of link-and system-level performance. IEEE Internet Things J. 2018, 5, 2249–2258. [Google Scholar] [CrossRef]
- Semtech. Semtech SX1301 WIRELESS & SENSING PRODUCTS Datasheet. 2017. Available online: https://www.semtech.com/products/wireless-rf/lora-gateways/sx1301 (accessed on 2 January 2020).
- Semtech. Semtech WIRELESS & SENSING PRODUCTS, Sx1272. 2017. Available online: https://www.semtech.com/products/wireless-rf/lora-transceivers/sx1272 (accessed on 2 January 2020).
- Network Simulator (ns)-3. Available online: https://www.nsnam.org/ (accessed on 11 May 2021).
- Farhad, A.; Kim, D.H.; Yoon, J.S.; Pyun, J.Y. Feasibility Study of the LoRaWAN blind Adaptive Data Rate. In Proceedings of the 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN), Jeju Island, Korea, 17–20 August 2021; pp. 67–69. [Google Scholar] [CrossRef]
- Farhad, A.; Kim, D.; Pyun, J. Scalability of LoRaWAN in an Urban Environment: A Simulation Study. In Proceedings of the Eleventh International Conference on Ubiquitous and Future Networks (ICUFN), Zagreb, Croatia, 2–5 July 2019; pp. 677–681. [Google Scholar] [CrossRef]
- Anwar, K.; Rahman, T.; Zeb, A.; Saeed, Y.; Khan, M.A.; Khan, I.; Ahmad, S.; Abdelgawad, A.E.; Abdollahian, M. Improving the Convergence Period of Adaptive Data Rate in a Long Range Wide Area Network for the Internet of Things Devices. Energies 2021, 14, 5614. [Google Scholar] [CrossRef]
Sensitivity Types | SF7 | SF8 | SF9 | SF10 | SF11 | SF12 |
---|---|---|---|---|---|---|
ED () [dBm] | −124.0 | −127.0 | −130.0 | −133.0 | −135.0 | −137.0 |
GW () [dBm] | −130.0 | −132.5 | −135.0 | −137.5 | −140.0 | −142.5 |
Parameter | Value |
---|---|
Simulation time [h] | 24 |
Number of transmission | 8 |
Path-loss exponent | 3.76 [36] |
Loss model | log-distance |
Mobility model | random walk 2-D [3,30] |
ED movement speed [m/s] | 0.5∼1.5 [3,30] |
Transmit power [dBm] | 2∼14 |
Frequency region | EU-868 |
Considered Application | Proposed by | Packet Interval/Day | Payload Size [Bytes] |
---|---|---|---|
Pet-tracking | Semtech [7] | 144 (for a single ED) | 30 |
Scheme | SF7 | SF8 | SF9 | SF10 | SF11 | SF12 |
---|---|---|---|---|---|---|
ADR | 33.7 | 2.3 | 2.9 | 2.9 | 2.4 | 55.8 |
G-ADR | 26.2 | 3.7 | 5.6 | 5.6 | 6.8 | 52.1 |
Proposed RM-ADR | 47.5 | 16.1 | 13.2 | 8.9 | 4.2 | 10.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, K.; Rahman, T.; Zeb, A.; Khan, I.; Zareei, M.; Vargas-Rosales, C. RM-ADR: Resource Management Adaptive Data Rate for Mobile Application in LoRaWAN. Sensors 2021, 21, 7980. https://doi.org/10.3390/s21237980
Anwar K, Rahman T, Zeb A, Khan I, Zareei M, Vargas-Rosales C. RM-ADR: Resource Management Adaptive Data Rate for Mobile Application in LoRaWAN. Sensors. 2021; 21(23):7980. https://doi.org/10.3390/s21237980
Chicago/Turabian StyleAnwar, Khola, Taj Rahman, Asim Zeb, Inayat Khan, Mahdi Zareei, and Cesar Vargas-Rosales. 2021. "RM-ADR: Resource Management Adaptive Data Rate for Mobile Application in LoRaWAN" Sensors 21, no. 23: 7980. https://doi.org/10.3390/s21237980
APA StyleAnwar, K., Rahman, T., Zeb, A., Khan, I., Zareei, M., & Vargas-Rosales, C. (2021). RM-ADR: Resource Management Adaptive Data Rate for Mobile Application in LoRaWAN. Sensors, 21(23), 7980. https://doi.org/10.3390/s21237980