Supervised Exercise Training Improves 6 min Walking Distance and Modifies Gait Pattern during Pain-Free Walking Condition in Patients with Symptomatic Lower Extremity Peripheral Artery Disease
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Experimental Design
2.2.1. Vascular Medicine Examination
2.2.2. Six Min Walk Test
2.2.3. Multimodal SET
2.3. Spatiotemporal Gait and Foot Kinematics Parameters
2.4. Statistical Analysis
3. Results
3.1. Participants
3.2. Vascular Parameters
3.3. Six Min Walk Test
3.4. Spatiotemporal Gait and Foot Kinematics Parameters: Acute and Chronic Adaptations
3.4.1. Spatiotemporal Gait Parameters (Acute Adaptations)
3.4.2. Spatiotemporal Gait Parameters (Chronic Adaptations)
Walking Speed
Stride Length
Stride Duration and Frequency
Stance and Swing Phase
Inner-Stance Phases
3.5. Foot Kinematics Parameters (Acute Adaptations)
3.6. Foot Kinematics Parameters (Chronic Adaptations)
4. Correlations
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aboyans, V.; Ricco, J.B.; Bartelink, M.E.L.; Bjorck, M.; Brodmann, M.; Cohnert, T. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteriesEndorsed by: The European Stroke Organization (ESO) The Task Force for the Diagnosis and Treatment of Peripheral Arterial Diseases of the European Society of Cardiology (ESC) and of the European Society for Vascular Surgery (ESVS). Eur. Heart J. 2018, 39, 763–816. [Google Scholar]
- Song, P.; Rudan, D.; Zhu, Y.; Fowkes, F.J.I.; Rahimi, K.; Fowkes, F.G.R.; Rudan, I. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: An updated systematic review and analysis. Lancet Glob. Health 2019, 7, e1020–e1030. [Google Scholar] [CrossRef] [Green Version]
- Liles, D.R.; Kallen, M.A.; Petersen, L.A.; Bush, R.L. Quality of Life and Peripheral Arterial Disease. J. Surg. Res. 2006, 136, 294–301. [Google Scholar] [CrossRef]
- Regensteiner, J.G.; Hiatt, W.R.; Coll, J.R.; Criqui, M.H.; Treat-Jacobson, D.; McDermott, M.M. The impact of peripheral arterial disease on health-related quality of life in the Peripheral Arterial Disease Awareness, Risk, and Treatment: New Resources for Survival (PARTNERS). Program. Vasc. Med. 2008, 13, 15–24. [Google Scholar] [CrossRef]
- Gardner, A.W.; Montgomery, P.S. Impaired Balance and Higher Prevalence of Falls in Subjects with Intermittent Claudication. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2001, 56, M454–M458. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.M.; Liu, K.; Greenland, P.; Guralnik, J.M.; Criqui, M.H.; Chan, C. Functional decline in peripheral arterial disease: Associations with the ankle brachial index and leg symptoms. JAMA 2004, 292, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Mockford, K.A.; Mazari, F.A.; Jordan, A.R.; Vanicek, N.; Chetter, I.C.; Coughlin, P.A. Computerized Dynamic Posturography in the Objective Assessment of Balance in Patients with Intermittent Claudication. Ann. Vasc. Surg. 2011, 25, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Schieber, M.N.; Hasenkamp, R.M.; Pipinos, I.I.; Johanning, J.M.; Stergiou, N.; DeSpiegelaere, H.K. Muscle strength and control characteristics are altered by peripheral artery disease. J. Vasc. Surg. 2017, 66, 178–186.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treat-Jacobson, D.; McDermott, M.M.; Bronas, U.G.; Campia, U.; Collins, T.C.; Criqui, M.H.; Gardner, A.W.; Hiatt, W.R.; Regensteiner, J.G.; Rich, K.; et al. Optimal Exercise Programs for Patients with Peripheral Artery Disease: A Scientific Statement From the American Heart Association. Circulation 2019, 139, e10–e33. [Google Scholar] [CrossRef] [PubMed]
- Celis, R.; Pipinos, I.I.; Scott-Pandorf, M.M.; Myers, S.A.; Stergiou, N.; Johanning, J.M. Peripheral arterial disease affects kinematics during walking. J. Vasc. Surg. 2009, 49, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-J.; Pipinos, I.; Johanning, J.; Radovic, M.; Huisinga, J.M.; Myers, S.A.; Stergiou, N. Bilateral claudication results in alterations in the gait biomechanics at the hip and ankle joints. J. Biomech. 2008, 41, 2506–2514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowther, R.G.; Spinks, W.L.; Leicht, A.S.; Quigley, F.; Golledge, J. Relationship between temporal-spatial gait parameters, gait kinematics, walking performance, exercise capacity, and physical activity level in peripheral arterial disease. J. Vasc. Surg. 2007, 45, 1172–1178. [Google Scholar] [CrossRef] [Green Version]
- Gommans, L.N.; Smid, A.T.; Scheltinga, M.R.; Cancrinus, E.; Brooijmans, F.A.; Meijer, K.; Teijink, J.A. Prolonged stance phase during walking in intermittent claudication. J. Vasc. Surg. 2017, 66, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Guilleron, C.; Beaune, B.; Durand, S.; Pouliquen, C.; Henni, S.; Abraham, P. Gait alterations in patient with intermittent claudication: Effect of unilateral vs bilateral ischemia. Clin. Physiol. Funct. Imaging 2021, 41, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Koutakis, P.; Johanning, J.M.; Haynatzki, G.R.; Myers, S.; Stergiou, N.; Longo, G.M.; Pipinos, I.I. Abnormal joint powers before and after the onset of claudication symptoms. J. Vasc. Surg. 2010, 52, 340–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myers, S.A.; Huben, N.B.; Yentes, J.; McCamley, J.; Lyden, E.R.; Pipinos, I.I.; Johanning, J.M. Spatiotemporal Changes Posttreatment in Peripheral Arterial Disease. Rehabilitation Res. Pract. 2015, 2015, 124023. [Google Scholar] [CrossRef] [Green Version]
- Szymczak, M.; Krupa, P.; Oszkinis, G.; Majchrzycki, M. Gait pattern in patients with peripheral artery disease. BMC Geriatr. 2018, 18, 52. [Google Scholar] [CrossRef]
- Gardner, A.W.; Forrester, L.; Smith, G.V. Altered gait profile in subjects with peripheral arterial disease. Vasc. Med. 2001, 6, 31–34. [Google Scholar] [CrossRef]
- Gardner, A.W.; Montgomery, P.S.; Casanegra, A.I.; Silva-Palacios, F.; Ungvari, Z.; Csiszar, A. Association between gait characteristics and endothelial oxidative stress and inflammation in patients with symptomatic peripheral artery disease. AGE 2016, 38, 64. [Google Scholar] [CrossRef] [Green Version]
- Lane, R.; Ellis, B.; Watson, L.; Leng, G.C. Exercise for intermittent claudication. Cochrane Database Syst. Rev. 2014, 12, CD000990. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.M.; Guralnik, J.M.; Criqui, M.H.; Liu, K.; Kibbe, M.R.; Ferrucci, L. Six-Minute Walk Is a Better Outcome Measure Than Treadmill Walking Tests in Therapeutic Trials of Patients with Peripheral Artery Disease. Circulation 2014, 130, 61–68. [Google Scholar] [CrossRef] [Green Version]
- McDermott, M.M.; Guralnik, J.M.; Tian, L.; Zhao, L.; Polonsky, T.S.; Kibbe, M.R.; Criqui, M.H.; Zhang, D.; Conte, M.S.; Domanchuk, K.; et al. Comparing 6-minute walk versus treadmill walking distance as outcomes in randomized trials of peripheral artery disease. J. Vasc. Surg. 2020, 71, 988–1001. [Google Scholar] [CrossRef] [PubMed]
- Parmenter, B.; Dieberg, G.; Smart, N.A. Exercise Training for Management of Peripheral Arterial Disease: A Systematic Review and Meta-Analysis. Sports Med. 2015, 45, 231–244. [Google Scholar] [CrossRef] [PubMed]
- Crowther, R.G.; Spinks, W.L.; Leicht, A.S.; Sangla, K.; Quigley, F.; Golledge, J. Effects of a long-term exercise program on lower limb mobility, physiological responses, walking performance, and physical activity levels in patients with peripheral arterial disease. J. Vasc. Surg. 2008, 47, 303–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowther, R.G.; Spinks, W.L.; Leicht, A.S.; Sangla, K.; Quigley, F.; Golledge, J. The influence of a long term exercise program on lower limb movement variability and walking performance in patients with peripheral arterial disease. Hum. Mov. Sci. 2009, 28, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Dziubek, W.; Bulińska, K.; Stefańska, M.; Woźniewski, M.; Kropielnicka, K.; Jasiński, T.; Jasiński, R.; Pilch, U.; Dąbrowska, G.; Skórkowska-Telichowska, K.; et al. Peripheral arterial disease decreases muscle torque and functional walking capacity in elderly. Maturitas 2015, 81, 480–486. [Google Scholar] [CrossRef]
- Haga, M.; Hoshina, K.; Koyama, H.; Miyata, T.; Ikegami, Y.; Murai, A.; Nakamura, Y. Bicycle exercise training improves ambulation in patients with peripheral artery disease. J. Vasc. Surg. 2020, 71, 979–987. [Google Scholar] [CrossRef] [Green Version]
- King, S.; Vanicek, N.; Mockford, K.A.; Coughlin, P.A. The effect of a 3-month supervised exercise programme on gait parameters of patients with peripheral arterial disease and intermittent claudication. Clin. Biomech. 2012, 27, 845–851. [Google Scholar] [CrossRef]
- Lanzi, S.; Boichat, J.; Calanca, L.; Aubertin, P.; Malatesta, D.; Mazzolai, L. Gait changes after supervised exercise training in patients with symptomatic lower extremity peripheral artery disease. Vasc. Med. 2021, 26, 259–266. [Google Scholar] [CrossRef]
- Schieber, M.N.; Pipinos, I.I.; Johanning, J.M.; Casale, G.P.; Williams, M.A.; DeSpiegelaere, H.K. Supervised walking exercise therapy improves gait biomechanics in patients with peripheral artery disease. J. Vasc. Surg. 2019, 71, 575–583. [Google Scholar] [CrossRef]
- Cavagna, G.A.; Willems, P.A.; Heglund, N.C. The role of gravity in human walking: Pendular energy exchange, external work and optimal speed. J. Physiol. 2000, 528, 657–668. [Google Scholar] [CrossRef]
- Gommans, L.N.; Fokkenrood, H.J.; van Dalen, H.C.; Scheltinga, M.R.; Teijink, J.A.; Peters, R.J. Safety of supervised exercise therapy in patients with intermittent claudication. J. Vasc. Surg. 2015, 61, 512–518.e2. [Google Scholar] [CrossRef] [Green Version]
- Lanzi, S.; Calanca, L.; Berchtold, A.; Mazzolai, L. Improvement in 6-Minute Walking Distance after Supervised Exercise Training Is Related to Changes in Quality of Life in Patients with Lower Extremity Peripheral Artery Disease. J. Clin. Med. 2021, 10, 3330. [Google Scholar] [CrossRef]
- ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care. Med. 2002, 166, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef]
- Calanca, L.; Lanzi, S.; Ney, B.; Berchtold, A.; Mazzolai, L. Multimodal Supervised Exercise Significantly Improves Walking Performances Without Changing Hemodynamic Parameters in Patients with Symptomatic Lower Extremity Peripheral Artery Disease. Vasc. Endovasc. Surg. 2020, 54, 605–611. [Google Scholar] [CrossRef]
- Ney, B.; Lanzi, S.; Calanca, L.; Mazzolai, L. Multimodal Supervised Exercise Training Is Effective in Improving Long Term Walking Performance in Patients with Symptomatic Lower Extremity Peripheral Artery Disease. J. Clin. Med. 2021, 10, 2057. [Google Scholar] [CrossRef] [PubMed]
- Dadashi, F.; Mariani, B.; Rochat, S.; Büla, C.J.; Santos-Eggimann, B.; Aminian, K. Gait and Foot Clearance Parameters Obtained Using Shoe-Worn Inertial Sensors in a Large-Population Sample of Older Adults. Sensors 2013, 14, 443–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariani, B.; Hoskovec, C.; Rochat, S.; Büla, C.; Penders, J.; Aminian, K. 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J. Biomech. 2010, 43, 2999–3006. [Google Scholar] [CrossRef]
- Wüest, S.; Massé, F.; Aminian, K.; Gonzenbach, R.; De Bruin, E.D. Reliability and validity of the inertial sensor-based Timed “Up and Go” test in individuals affected by stroke. J. Rehabil. Res. Dev. 2016, 53, 599–610. [Google Scholar] [CrossRef]
- Bregou Bourgeois, A.; Mariani, B.; Aminian, K.; Zambelli, P.Y.; Newman, C.J. Spatiotemporal gait analysis in children with cerebral palsy using, foot-worn inertial sensors. Gait Posture 2014, 39, 436–442. [Google Scholar] [CrossRef]
- Mariani, B.; Jimenez, M.C.; Vingerhoets, F.J.; Aminian, K. On-shoe wearable sensors for gait and turning assessment of patients with Parkinson’s disease. IEEE Trans. Biomed. Eng. 2013, 60, 155–158. [Google Scholar] [CrossRef] [PubMed]
- McDermott, M.M.; Tian, L.; Criqui, M.H.; Ferrucci, L.; Conte, M.S.; Zhao, L.; Li, L.; Sufit, R.; Polonsky, T.S.; Kibbe, M.R.; et al. Meaningful change in 6-minute walk in people with peripheral artery disease. J. Vasc. Surg. 2021, 73, 267–276.e1. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.W.; Montgomery, P.S.; Wang, M. Minimal clinically important differences in treadmill, 6-minute walk, and patient-based outcomes following supervised and home-based exercise in peripheral artery disease. Vasc. Med. 2018, 23, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Beekman, E.; Mesters, I.; Hendriks, E.J.; Klaassen, M.P.; Gosselink, R.; Van Schayck, O.C.; De Bie, R.A. Course length of 30 metres versus 10 metres has a significant influence on six-minute walk distance in patients with COPD: An experimental crossover study. J. Physiother. 2013, 59, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, A.; Cider, Å.; Jivegård, L.; Nordanstig, J.; Wittboldt, S.; Bäck, M. Test-retest reliability, agreement, and minimal detectable change in the 6-minute walk test in patients with intermittent claudication. J. Vasc. Surg. 2020, 71, 197–203. [Google Scholar] [CrossRef] [Green Version]
- Pipinos, I.I.; Judge, A.R.; Selsby, J.T.; Zhu, Z.; Swanson, S.A.; Nella, A.A. The myopathy of peripheral arterial occlusive disease: Part 1. Functional and histomorphological changes and evidence for mitochondrial dysfunction. Vasc. Endovasc. Surg. 2007, 41, 481–489. [Google Scholar] [CrossRef]
- Pipinos, I.I.; Judge, A.R.; Selsby, J.T.; Zhu, Z.; Swanson, S.A.; Nella, A.A. The myopathy of peripheral arterial occlusive disease: Part 2. Oxidative stress, neuropathy, and shift in muscle fiber type. Vasc. Endovasc. Surg. 2008, 42, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Dziubek, W.; Stefańska, M.; Bulińska, K.; Barska, K.; Paszkowski, R.; Kropielnicka, K.; Jasiński, R.; Rachwalik, A.; Woźniewski, M.; Szuba, A. Effects of Physical Rehabilitation on Spatiotemporal Gait Parameters and Ground Reaction Forces of Patients with Intermittent Claudication. J. Clin. Med. 2020, 9, 2826. [Google Scholar] [CrossRef]
- Nascimento, L.R.; de Oliveira, C.Q.; Ada, L.; Michaelsen, S.M.; Teixeira-Salmela, L.F. Walking training with cueing of cadence improves walking speed and stride length after stroke more than walking training alone: A systematic review. J. Physiother. 2015, 61, 10–15. [Google Scholar] [CrossRef] [Green Version]
Variables | Mean ± SD or n (%) |
---|---|
Number of included patients | 29 |
Men | 15 (52) |
Women | 14 (48) |
Age—years | 65.4 ± 9.9 |
BMI—kg·m−2 | 28.7 ± 6.2 |
Cardiovascular risk factors | |
Hypercholesterolemia | 23 (79) |
Hypertension | 24 (83) |
Smoking (current) | 12 (41) |
Smoking (former) | 13 (45) |
Smoking (never) | 4 (14) |
Family history of CVD | 13 (45) |
Type 2 diabetes mellitus | 8 (28) |
Type 1 diabetes | 1 (3) |
Prior history of CVD | |
Cardiac | 8 (28) |
Cerebrovascular | 2 (7) |
Prior arterial revascularisation | 13 (45) |
Ongoing treatment | |
Antiplatelet | 28 (97) |
Antihypertensive | 24 (83) |
Lipid lowering | 23 (79) |
Antidiabetic | 9 (31) |
Variable | Before | After | p Value |
---|---|---|---|
6MWD—m | 425.5 ± 70.3 | 468.7 ± 84.3 | ≤0.001 |
PFWT6min—s | 125.1 ± 55.4 | 123.3 ± 54.0 | 0.869 |
PFWD6min—m | 162.5 ± 67.4 | 179.2 ± 77.6 | 0.245 |
6MWTRPE | 12.3 ± 2.5 | 13.2 ± 2.2 | 0.043 |
6MWTVAS | 6.8 ± 2.2 | 7.1 ± 1.8 | 0.432 |
Before SET | After SET | Two-Way ANOVA p-Values | |||||
---|---|---|---|---|---|---|---|
Variable | Pain-Free | Pain | Pain-Free | Pain | Time Effect | Duration Effect | Time × Duration |
Walking speed—m·s−1 | 1.3 ± 0.2 | 1.2 ± 0.2 * | 1.5 ± 0.2 # | 1.3 ± 0.2 *,# | ≤0.001 | ≤0.001 | 0.031 |
Spatial Parameter | |||||||
Stride length—m | 1.4 ± 0.2 | 1.3 ± 0.2 * | 1.4 ± 0.2 # | 1.3 ± 0.2 * | 0.013 | ≤0.001 | 0.020 |
Temporal Parameters | |||||||
Stride duration—s | 1.0 ± 0.1 | 1.1 ± 0.1 | 1.0 ± 0.1 | 1.0 ± 0.1 | ≤0.001 | ≤0.001 | 0.502 |
Stride frequency—Hz | 1.0 ± 0.1 | 0.9 ± 0.1 | 1.0 ± 0.1 | 1.0 ± 0.1 | ≤0.001 | ≤0.001 | 0.297 |
Stance duration—% | 60.1 ± 2.0 | 60.5 ± 1.9 | 59.6 ± 2.3 | 60.5 ± 2.4 £ | 0.431 | 0.017 | 0.033 |
Swing duration—% | 39.9 ± 2.0 | 39.5 ± 1.9 | 40.4 ± 2.3 | 39.5 ± 2.4 £ | 0.431 | 0.017 | 0.033 |
Loading response—% | 12.5 ± 3.1 | 11.0 ± 2.7 * | 14.0 ± 3.2 # | 11.3 ± 3.0 * | 0.013 | ≤0.001 | 0.019 |
Foot-flat—% | 55.2 ± 6.3 | 59.8 ± 6.3 * | 53.2 ± 6.4 # | 60.4 ± 6.3 * | 0.139 | ≤0.001 | 0.011 |
Push-off—% | 32.3 ± 4.9 | 29.2 ± 4.8 | 32.7 ± 5.5 | 28.3 ± 5.0 | 0.706 | ≤0.001 | 0.098 |
Double support—% | 20.9 ± 3.5 | 22.9 ± 3.7 | 19.5 ± 4.0 | 21.9 ± 3.9 | 0.057 | ≤0.001 | 0.413 |
Before SET | After SET | Two-Way ANOVA p-Values | |||||
---|---|---|---|---|---|---|---|
Variable | Pain-Free | Pain | Pain-Free | Pain | Time Effect | Duration Effect | Time × Duration |
Heel-strike pitch angle—° | 26.9 ± 6.8 | 24.4 ± 6.2 | 27.8 ± 5.9 | 24.2 ± 5.0 | 0.463 | ≤0.001 | 0.080 |
Toe-off pitch angle—° | −68.8 ± 6.4 | −65.2 ± 8.1 * | −70.5 ± 6.3 # | −65.1 ± 7.2 * | 0.356 | ≤0.001 | 0.047 |
Max heel clearance—cm | 30.1 ± 5.4 | 28.9 ± 5.6 | 30.5 ± 4.5 | 29.2 ± 5.1 | 0.517 | 0.003 | 0.476 |
First max toe clearance—cm | 7.8 ± 4.1 | 7.6 ± 4.2 | 7.9 ± 3.2 | 7.7 ± 3.5 | 0.837 | 0.252 | 0.895 |
Second max toe clearance—cm | 18.1 ± 4.1 | 16.7 ± 3.4 | 17.5 ± 4.2 | 15.6 ± 3.6 | 0.082 | ≤0.001 | 0.210 |
Min toe clearance—cm | 2.4 ± 0.9 | 2.1 ± 0.8 | 2.4 ± 1.1 | 2.2 ± 1.1 | 0.800 | 0.013 | 0.933 |
Gait Pattern Changes | Relationship with the 6 min Walking Distance Changes | p Value |
---|---|---|
Stride length—m | r = 0.497 | 0.007 |
Stride frequency—Hz | r = 0.786 | ≤0.001 |
Stance duration—% | r = −0.261 | 0.180 |
Swing duration—% | r = 0.261 | 0.180 |
Loading response—% | r = 0.320 | 0.097 |
Foot-flat—% | r = −0.567 | 0.002 |
Push-off—% | r = 0.303 | 0.116 |
Double support—% | r = −0.356 | 0.060 |
Heel-strike pitch angle—° | r = 0.313 | 0.105 |
Toe-off pitch angle—° | r = −0.100 | 0.614 |
Max heel clearance—cm | r = −0.112 | 0.570 |
First max toe clearance—cm | r = 0.035 | 0.858 |
Second max toe clearance—cm | r = 0.424 | 0.025 |
Min toe clearance—cm | r = −0.117 | 0.553 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanzi, S.; Boichat, J.; Calanca, L.; Mazzolai, L.; Malatesta, D. Supervised Exercise Training Improves 6 min Walking Distance and Modifies Gait Pattern during Pain-Free Walking Condition in Patients with Symptomatic Lower Extremity Peripheral Artery Disease. Sensors 2021, 21, 7989. https://doi.org/10.3390/s21237989
Lanzi S, Boichat J, Calanca L, Mazzolai L, Malatesta D. Supervised Exercise Training Improves 6 min Walking Distance and Modifies Gait Pattern during Pain-Free Walking Condition in Patients with Symptomatic Lower Extremity Peripheral Artery Disease. Sensors. 2021; 21(23):7989. https://doi.org/10.3390/s21237989
Chicago/Turabian StyleLanzi, Stefano, Joël Boichat, Luca Calanca, Lucia Mazzolai, and Davide Malatesta. 2021. "Supervised Exercise Training Improves 6 min Walking Distance and Modifies Gait Pattern during Pain-Free Walking Condition in Patients with Symptomatic Lower Extremity Peripheral Artery Disease" Sensors 21, no. 23: 7989. https://doi.org/10.3390/s21237989
APA StyleLanzi, S., Boichat, J., Calanca, L., Mazzolai, L., & Malatesta, D. (2021). Supervised Exercise Training Improves 6 min Walking Distance and Modifies Gait Pattern during Pain-Free Walking Condition in Patients with Symptomatic Lower Extremity Peripheral Artery Disease. Sensors, 21(23), 7989. https://doi.org/10.3390/s21237989