Design of 2D Planar Sparse Binned Arrays Based on the Coarray Analysis
Abstract
:1. Introduction
2. Beampattern Analysis
2.1. Problem Description
2.2. Delay-and-Sum Beamforming Technique
2.3. Spatial Representation of Beamforming Information
2.4. Sparse Binned Array and Sparseness Degree
2.5. Beampattern Metric Analysis
2.6. Coarray-Based Metric Analysis for Sparse Array Design
2.7. Incidence of Coarray Distribution Parameters in the Beampattern
2.7.1. The 100I Configuration
2.7.2. The 100V Configuration
2.7.3. The 196I Configuration
3. Fitness Functions
3.1. Coarray-Based Fitness Function
3.1.1. Evolution
3.1.2. Results and Discussion
3.2. Combined Fitness Function
3.2.1. Evolution
3.2.2. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Park, J.M.; Shin, D.S.; Han, J.S.; Oh, J.W.; Park, S.; Kim, Y.; Jang, J.M.; Lee, W.; Park, S.J. Design, fabrication of honeycomb-shaped 1–3 connectivity piezoelectric micropillar arrays for 2D ultrasound transducer application. Ceram. Int. 2020, 46, 12023–12030. [Google Scholar] [CrossRef]
- Patricio Rodrigues, E.; Francisco de Oliveira, T.; Yassunori Matuda, M.; Buiochi, F. Development of a 2-D Array Ultrasonic Transducer for 3-D Imaging of Objects Immersed in Water. Sensors 2021, 21, 3501. [Google Scholar] [CrossRef] [PubMed]
- Lok, U.W.; Li, P.C. Microbeamforming With Error Compensation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 1153–1165. [Google Scholar] [CrossRef]
- Wang, X.B.; He, L.M.; Ma, Y.C.; Liu, W.J.; Xu, W.J.; Ren, J.Y.; Riaud, A.; Zhou, J. Development of Broadband High-Frequency Piezoelectric Micromachined Ultrasonic Transducer Array. Sensors 2021, 21, 1823. [Google Scholar] [CrossRef]
- Selim, H.; Trull, J.; Delgado Prieto, M.; Picó, R.; Romeral, L.; Cojocaru, C. Fully Noncontact Hybrid NDT for 3D Defect Reconstruction Using SAFT Algorithm and 2D Apodization Window. Sensors 2019, 19, 2138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afrakhteh, S.; Behnam, H. Efficient synthetic transmit aperture ultrasound based on tensor completion. Ultrasonics 2021, 117, 106553. [Google Scholar] [CrossRef]
- Holmes, C.; Drinkwater, B.W.; Wilcox, P.D. Post-processing of the full matrix of ultrasonic transmit–receive array data for non-destructive evaluation. NDT E Int. 2005, 38, 701–711. [Google Scholar] [CrossRef]
- Makūnaitė, M.; Jurkonis, R.; Lukoševičius, A.; Baranauskas, M. Main Uncertainties in the RF Ultrasound Scanning Simulation of the Standard Ultrasound Phantoms. Sensors 2021, 21, 4420. [Google Scholar] [CrossRef]
- Rasmussen, M.F.; Jensen, J.A. Comparison of 3-D synthetic aperture phased-array ultrasound imaging and parallel beamforming. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 1638–1650. [Google Scholar] [CrossRef] [Green Version]
- Romero-Laorden, D.; Villazón-Terrazas, J.; Martínez-Graullera, O.; Ibáñez, A.; Parrilla, M.; Peñas, M.S. Analysis of Parallel Computing Strategies to Accelerate Ultrasound Imaging Processes. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 3429–3440. [Google Scholar] [CrossRef]
- Chi, C.; Li, Z. High-Resolution Real-Time Underwater 3-D Acoustical Imaging Through Designing Ultralarge Ultrasparse Ultra-Wideband 2-D Arrays. IEEE Trans. Instrum. Meas. 2017, 66, 2647–2657. [Google Scholar] [CrossRef]
- Schwartz, J.; Steinberg, B. Ultrasparse, ultrawideband arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1998, 45, 376–393. [Google Scholar] [CrossRef]
- Li, X.; Gachagan, A.; Murray, P. Design of 2D Sparse Array Transducers for Anomaly Detection in Medical Phantoms. Sensors 2020, 20, 5370. [Google Scholar] [CrossRef]
- Piwakowski, B.; Sbai, K. A new approach to calculate the field radiated from arbitrarily structured transducer arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1999, 46, 422–440. [Google Scholar] [CrossRef]
- Li, Z.; Chi, C. Fast computation of far-field pulse-echo PSF of arbitrary arrays for large sparse 2-D ultrasound array design. Ultrasonics 2018, 84, 63–73. [Google Scholar] [CrossRef]
- Yoon, J.H.; Song, S. Sparse Rectangular and Spiral Array Designs for 3D Medical Ultrasound Imaging. Sensors 2019, 20, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diarra, B.; Robini, M.; Tortoli, P.; Cachard, C.; Liebgott, H. Design of Optimal 2-D Nongrid Sparse Arrays for Medical Ultrasound. IEEE Trans. Biomed. Eng. 2013, 60, 3093–3102. [Google Scholar] [CrossRef] [PubMed]
- Lou, C.; Xiao, F.; Song, J.; Ding, M.; Yuchi, M. Ultrasound Planar Array Imaging Metric Analysis. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 2386–2396. [Google Scholar] [CrossRef]
- Roux, E.; Ramalli, A.; Tortoli, P.; Cachard, C.; Robini, M.C.; Liebgott, H. 2-D Ultrasound Sparse Arrays Multidepth Radiation Optimization Using Simulated Annealing and Spiral-Array Inspired Energy Functions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2016, 63, 2138–2149. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, B.D. Principles of Aperture and Array System Design: Including Random and Adaptive Arrays; Steinberg, B.D., Ed.; Wiley: New York, NY, USA, 1976. [Google Scholar]
- Hoctor, R.; Kassam, S. The unifying role of the coarray in aperture synthesis for coherent and incoherent imaging. Proc. IEEE 1990, 78, 735–752. [Google Scholar] [CrossRef]
- Brunke, S.; Lockwood, G. Broad-bandwidth radiation patterns of sparse two-dimensional vernier arrays. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1997, 44, 1101–1109. [Google Scholar] [CrossRef]
- Karaman, M.; Wygant, I.O.; Oralkan, O.; Khuri-Yakub, B.T. Minimally Redundant 2-D Array Designs for 3-D Medical Ultrasound Imaging. IEEE Trans. Med Imaging 2009, 28, 1051–1061. [Google Scholar] [CrossRef]
- Ishiguro, M. Minimum redundancy linear arrays for a large number of antennas. Radio Sci. 1980, 15, 1163–1170. [Google Scholar] [CrossRef]
- Martín-Arguedas, C.J.; Romero-Laorden, D.; Martínez-Graullera, O.; Pérez-López, M.; Gómez-Ullate, L. An Ultrasonic Imaging System based on a New SAFT Approach and a GPU Beamformer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 1402–1412. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, W. The totally random versus the bin approach for random arrays. IEEE Trans. Antennas Propag. 1991, 39, 1757–1762. [Google Scholar] [CrossRef]
- Davidsen, R.; Jensen, J.; Smith, S. Two-Dimensional Random Arrays for Real Time Volumetric Imaging. Ultrason. Imaging 1994, 16, 143–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austeng, A.; Holm, S. Sparse 2-D arrays for 3-D phased array imaging—Design methods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2002, 49, 1073–1086. [Google Scholar] [CrossRef]
- Yagüe-Jiménez, V.; Ibáñez Rodríguez, A.; Parrilla Romero, M.; Martínez-Graullera, O. Rician Beamforming: Despeckle Method via Coarray Projection Stochastic Analysis. Appl. Sci. 2020, 10, 847. [Google Scholar] [CrossRef] [Green Version]
- Martín, C.; Martínez, O.; Octavio, A.; Montero, F.; Ullate, L. 2D SAFT technique to reduce grating lobes in volumetric imaging. Phys. Procedia 2010, 3, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Davidsen, R.; Smith, S. Sparse geometries for two-dimensional array transducers in volumetric imaging. In Proceedings of the 1993 Proceedings IEEE Ultrasonics Symposium, Baltimore, MD, USA, 31 October–3 November 1993; Volume 2, pp. 1091–1094. [Google Scholar] [CrossRef]
- DeCarlo, L.T. On the meaning and use of kurtosis. Psychol. Methods 1997, 2, 292–307. [Google Scholar] [CrossRef]
Configuration | Search 1 | Search 2 | Search 3 |
---|---|---|---|
84,160:96 | 92,204:117 | 65,828:87 | |
222,104:169 | 266,043: 173 | 119,884:149 | |
125,333:160 | 197,296:175 | 202,446:161 |
Configuration | [dB] | [dB] | [dB] | |
---|---|---|---|---|
−37.32 | −44.94 | −36.66 | ||
−41.56 | −47.64 | −40.12 | ||
−45.14 | −51.31 | −44.03 |
Configuration | Apertures | Beampatterns | Candidates |
---|---|---|---|
6380 | 209 | 16 | |
5620 | 292 | 17 | |
13,436 | 491 | 33 | |
9788 | 858 | 23 | |
10,892 | 517 | 41 | |
12,761 | 1039 | 49 |
Configuration | ||||
---|---|---|---|---|
−40.00 | −44.80 | −39.45 | ||
−42.88 | −47.44 | −42.25 | ||
−47.25 | −51.37 | −47.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Graullera, Ó.; de Souza, J.C.E.; Parrilla Romero, M.; Higuti, R.T. Design of 2D Planar Sparse Binned Arrays Based on the Coarray Analysis. Sensors 2021, 21, 8018. https://doi.org/10.3390/s21238018
Martínez-Graullera Ó, de Souza JCE, Parrilla Romero M, Higuti RT. Design of 2D Planar Sparse Binned Arrays Based on the Coarray Analysis. Sensors. 2021; 21(23):8018. https://doi.org/10.3390/s21238018
Chicago/Turabian StyleMartínez-Graullera, Óscar, Júlio Cesar Eduardo de Souza, Montserrat Parrilla Romero, and Ricardo Tokio Higuti. 2021. "Design of 2D Planar Sparse Binned Arrays Based on the Coarray Analysis" Sensors 21, no. 23: 8018. https://doi.org/10.3390/s21238018
APA StyleMartínez-Graullera, Ó., de Souza, J. C. E., Parrilla Romero, M., & Higuti, R. T. (2021). Design of 2D Planar Sparse Binned Arrays Based on the Coarray Analysis. Sensors, 21(23), 8018. https://doi.org/10.3390/s21238018