Benchmarking Domain Adaptation Methods on Aerial Datasets
Abstract
:1. Introduction
- We present the first benchmarking study of domain adaptation on aerial datasets.
- We construct six different aerial datasets for domain adaptation by carefully selecting the common classes and balancing the datasets.
- We consider seven models for unsupervised domain adaptation and report their performance on the aerial datasets.
2. Background
3. Domain Adaptation Algorithms
3.1. Domain-Symmetric Networks for Adversarial Domain Adaptation
3.2. Spherical Space Domain Adaptation with Robust Pseudo-Label Loss
3.3. Gradually Vanishing Bridge for Adversarial Domain Adaptation
3.4. Conditional Adversarial Domain Adaptation with Gradually Vanishing Bridge
3.5. Universal Domain Adaptation with Universal Adaptation Network
3.6. Source Hypothesis Transfer
3.7. Unsupervised Domain Adaptation via Structurally Regularized Deep Clustering
4. Aerial Datasets
4.1. AID
4.2. UCM
4.3. NWPU
4.4. CLRS
4.5. xView
4.6. DOTA
4.7. Aerial DA Datasets
5. Experiments
- Fix F, C, and D and estimate : The pseudo-labels are estimated by fixing F, C, and D and the distance of a sample from the spherical class center for a class is calculated using the cosine distance. Then, is estimated by the EM algorithm [59].
6. Results and Discussion
6.1. Performance Comparison
6.2. xView to DOTA Results
6.3. Feature Visualization
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Goodfellow, I. NIPS 2016 Tutorial: Generative Adversarial Networks. arXiv 2017, arXiv:1701.00160. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: http://www.deeplearningbook.org (accessed on 1 May 2021).
- Ghifary, M.; Bastiaan Kleijn, W.; Zhang, M.; Balduzzi, D.; Li, W. Deep Reconstruction-Classification Networks for Unsupervised Domain Adaptation. arXiv 2016, arXiv:1607.03516. [Google Scholar]
- Long, M.; Cao, Y.; Wang, J.; Jordan, M. Learning Transferable Features with Deep Adaptation Networks. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 37, pp. 97–105. [Google Scholar]
- Patel, V.M.; Gopalan, R.; Li, R.; Chellappa, R. Visual Domain Adaptation: A survey of recent advances. IEEE Signal Process. Mag. 2015, 32, 53–69. [Google Scholar] [CrossRef]
- Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle, H.; Laviolette, F.; Marchand, M.; Lempitsky, V. Domain-Adversarial Training of Neural Networks. J. Mach. Learn. Res. 2016, 17, 1–35. [Google Scholar]
- Wilson, G.; Cook, D.J. A Survey of Unsupervised Deep Domain Adaptation. ACM Trans. Intell. Syst. Technol. 2020, 11. [Google Scholar] [CrossRef]
- Bungum, L.; Gambäck, B. Multi-domain Adapted Machine Translation Using Unsupervised Text Clustering. In Modeling and Using Context. CONTEXT 2015; Lecture Notes in Computer Science Series; Springer: Cham, Switzerland, 2015; pp. 201–213. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.; Wang, R. A Survey of Domain Adaptation for Neural Machine Translation. In Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, NM, USA, 20–26 August 2018; pp. 1304–1319. [Google Scholar]
- Csurka, G. Domain Adaptation for Visual Applications: A Comprehensive Survey. In Domain Adaptation in Computer Vision Applications; Advances in Computer Vision and Pattern Recognition Series; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Kouw, W.M.; Loog, M. A review of domain adaptation without target labels. arXiv 2019, arXiv:1901.05335. [Google Scholar] [CrossRef] [Green Version]
- Margolis, A. A Literature Review of Domain Adaptation with Unlabeled Data. In Rapport Technique; University of Washington: Washington, DC, USA, 2011. [Google Scholar]
- Sun, S.; Shi, H.; Wu, Y. A survey of multi-source domain adaptation. Inf. Fusion 2015, 24, 84–92. [Google Scholar] [CrossRef]
- Wang, M.; Deng, W. Deep visual domain adaptation: A survey. Neurocomputing 2018, 312, 135–153. [Google Scholar] [CrossRef] [Green Version]
- Cook, D.; Feuz, K.D.; Krishnan, N.C. Transfer Learning for Activity Recognition: A Survey. Knowl. Inf. Syst. 2013, 36, 537–556. [Google Scholar] [CrossRef] [Green Version]
- Lazaric, A. Transfer in Reinforcement Learning: A Framework and a Survey. In Reinforcement Learning: State-of-the-Art; Wiering, M., van Otterlo, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 143–173. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [Google Scholar] [CrossRef]
- Shao, L.; Zhu, F.; Li, X. Transfer Learning for Visual Categorization: A Survey. IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1019–1034. [Google Scholar] [CrossRef]
- Tan, C.; Sun, F.; Kong, T.; Zhang, W.; Yang, C.; Liu, C. A Survey on Deep Transfer Learning. In Proceedings of the 27th International Conference on Artificial Neural Networks (ICANN), Rhodes, Greece, 4–7 October 2018. [Google Scholar]
- Weiss, K.; Khoshgoftaar, T.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Saenko, K.; Kulis, B.; Fritz, M.; Darrell, T. Adapting Visual Category Models to New Domains. In Computer Vision—ECCV 2010; Lecture Notes in Computer Science Series; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6314, pp. 213–226. [Google Scholar] [CrossRef]
- Netzer, Y.; Wang, T.; Coates, A.; Bissacco, A.; Wu, B.; Ng, A.Y. Reading Digits in Natural Images with Unsupervised Feature Learning. In Proceedings of the NIPS Workshop on Deep Learning and Unsupervised Feature Learning, Granada, Spain, 12–17 December 2011. [Google Scholar]
- LeCun, Y.; Cortes, C. MNIST Handwritten Digit Database. 2010. Available online: https://www.bibsonomy.org/bibtex/2935bad99fa1f65e03c25b315aa3c1032/mhwombat (accessed on 1 May 2021).
- Peng, X.; Usman, B.; Kaushik, N.; Hoffman, J.; Wang, D.; Saenko, K. Visda: The visual domain adaptation challenge. arXiv 2017, arXiv:1710.06924. [Google Scholar]
- Peng, X.; Usman, B.; Saito, K.; Kaushik, N.; Hoffman, J.; Saenko, K. Syn2Real: A New Benchmark for Synthetic-to-Real Visual Domain Adaptation. arXiv 2018, arXiv:1806.09755. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Deep transfer learning with joint adaptation networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2208–2217. [Google Scholar]
- Rostami, M.; Kolouri, S.; Eaton, E.; Kim, K. Deep transfer learning for few-shot sar image classification. Remote Sens. 2019, 11, 1374. [Google Scholar] [CrossRef] [Green Version]
- Taufique, A.M.N.; Nagananda, N.; Savakis, A. Visualization of Deep Transfer Learning in SAR Imagery. In Proceedings of the IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing, Waikoloa, HI, USA, 26 September–2 October 2021; pp. 3497–3500. [Google Scholar]
- Long, M.; Zhu, H.; Wang, J.; Jordan, M.I. Unsupervised Domain Adaptation with Residual Transfer Networks. In Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 136–144. [Google Scholar]
- Ghifary, M.; Kleijn, W.B.; Zhang, M. Domain Adaptive Neural Networks for Object Recognition. In PRICAI 2014: Trends in Artificial Intelligence; Pham, D.N., Park, S.B., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 898–904. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Zhang, N.; Saenko, K.; Darrell, T. Deep Domain Confusion: Maximizing for Domain Invariance. arXiv 2014, arXiv:1412.3474. [Google Scholar]
- Yan, H.; Ding, Y.; Li, P.; Wang, Q.; Xu, Y.; Zuo, W. Mind the Class Weight Bias: Weighted Maximum Mean Discrepancy for Unsupervised Domain Adaptation. arXiv 2017, arXiv:1705.00609. [Google Scholar]
- Zhuang, F.; Cheng, X.; Luo, P.; Pan, S.J.; He, Q. Supervised Representation Learning: Transfer Learning with Deep Autoencoders. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI), Buenos Aires, Argentina, 25–31 July 2015; pp. 4119–4125. [Google Scholar]
- Sun, B.; Saenko, K. Deep CORAL: Correlation Alignment for Deep Domain Adaptation. In Computer Vision—ECCV 2016 Workshops; Hua, G., Jégou, H., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 443–450. [Google Scholar]
- Peng, X.; Saenko, K. Synthetic to Real Adaptation with Generative Correlation Alignment Networks. arXiv 2017, arXiv:1701.05524. [Google Scholar]
- Tzeng, E.; Hoffman, J.; Darrell, T.; Saenko, K. Simultaneous Deep Transfer Across Domains and Tasks. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 4068–4076. [Google Scholar] [CrossRef] [Green Version]
- Peng, X.; Hoffman, J.; Yu, S.; Saenko, K. Fine-to-coarse knowledge transfer for low-res image classification. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3683–3687. [Google Scholar]
- Hu, J.; Lu, J.; Tan, Y.P.; Zhou, J. Deep Transfer Metric Learning. IEEE Trans. Image Process. 2016, 25, 5576–5588. [Google Scholar] [CrossRef]
- Motiian, S.; Piccirilli, M.; Adjeroh, D.A.; Doretto, G. Unified Deep Supervised Domain Adaptation and Generalization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Zhang, X.; Yu, F.; Chang, S.; Wang, S. Deep Transfer Network: Unsupervised Domain Adaptation. arXiv 2015, arXiv:1503.00591. [Google Scholar]
- Li, Y.; Wang, N.; Shi, J.; Liu, J.; Hou, X. Revisiting Batch Normalization for Practical Domain Adaptation. arXiv 2016, arXiv:1603.04779. [Google Scholar]
- Li, Y.; Wang, N.; Liu, J.; Hou, X. Demystifying Neural Style Transfer. arXiv 2017, arXiv:1701.01036. [Google Scholar]
- Huang, X.; Belongie, S. Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Xiao, T.; Li, H.; Ouyang, W.; Wang, X. Learning Deep Feature Representations with Domain Guided Dropout for Person Re-identification. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 1249–1258. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.Y.; Tuzel, O. Coupled Generative Adversarial Networks. In Advances in Neural Information Processing Systems; Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2016; Volume 29. [Google Scholar]
- Bousmalis, K.; Silberman, N.; Dohan, D.; Erhan, D.; Krishnan, D. Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 95–104. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976. [Google Scholar]
- Tzeng, E.; Devin, C.; Hoffman, J.; Finn, C.; Abbeel, P.; Levine, S.; Saenko, K.; Darrell, T. Adapting Deep Visuomotor Representations with Weak Pairwise Constraints. In Algorithmic Foundations of Robotics XII: Proceedings of the Twelfth Workshop on the Algorithmic Foundations of Robotics; Goldberg, K., Abbeel, P., Bekris, K., Miller, L., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 688–703. [Google Scholar] [CrossRef]
- Tzeng, E.; Hoffman, J.; Saenko, K.; Darrell, T. Adversarial Discriminative Domain Adaptation. arXiv 2017, arXiv:1702.05464. [Google Scholar]
- Ganin, Y.; Lempitsky, V. Unsupervised Domain Adaptation by Backpropagation. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 37, pp. 1180–1189. [Google Scholar]
- Panareda Busto, P.; Gall, J. Open Set Domain Adaptation. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Zhang, Y.; Tang, H.; Jia, K.; Tan, M. Domain-symmetric networks for adversarial domain adaptation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 5031–5040. [Google Scholar]
- Gu, X.; Sun, J.; Xu, Z. Spherical Space Domain Adaptation With Robust Pseudo-Label Loss. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Cui, S.; Wang, S.; Zhuo, J.; Su, C.; Huang, Q.; Tian, Q. Gradually Vanishing Bridge for Adversarial Domain Adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 12452–12461. [Google Scholar]
- You, K.; Long, M.; Cao, Z.; Wang, J.; Jordan, M.I. Universal Domain Adaptation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 2715–2724. [Google Scholar] [CrossRef]
- Liang, J.; Hu, D.; Feng, J. Do We Really Need to Access the Source Data? Source Hypothesis Transfer for Unsupervised Domain Adaptation. In Proceedings of the 37th International Conference on Machine Learning, Virtual Event, 13–18 July 2020; Volume 119, pp. 6028–6039. [Google Scholar]
- Tang, H.; Chen, K.; Jia, K. Unsupervised Domain Adaptation via Structurally Regularized Deep Clustering. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 8722–8732. [Google Scholar]
- Grandvalet, Y.; Bengio, Y. Semi-Supervised Learning by Entropy Minimization. In Proceedings of the 17th International Conference on Neural Information Processing Systems (NIPS’04); MIT Press: Cambridge, MA, USA, 2004; pp. 529–536. [Google Scholar]
- Liu, W.; Wen, Y.; Yu, Z.; Li, M.; Raj, B.; Song, L. SphereFace: Deep Hypersphere Embedding for Face Recognition. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6738–6746. [Google Scholar] [CrossRef] [Green Version]
- Perronnin, F.; Sánchez, J.; Mensink, T. Improving the Fisher Kernel for Large-Scale Image Classification. In ECCV 2010—European Conference on Computer Vision, Heraklion, Greece, 5–11 September 2010; Lecture Notes in Computer Science Series; Daniilidis, K., Maragos, P., Paragios, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6314, pp. 143–156. [Google Scholar] [CrossRef] [Green Version]
- Saito, K.; Kim, D.; Sclaroff, S.; Darrell, T.; Saenko, K. Semi-Supervised Domain Adaptation via Minimax Entropy. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 8049–8057. [Google Scholar] [CrossRef] [Green Version]
- Xu, R.; Li, G.; Yang, J.; Lin, L. Larger Norm More Transferable: An Adaptive Feature Norm Approach for Unsupervised Domain Adaptation. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; IEEE Computer Society: Los Alamitos, CA, USA, 2019; pp. 1426–1435. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, Y.; Zhou, Z.; Ji, X.; Gong, D.; Zhou, J.; Li, Z.; Liu, W. CosFace: Large Margin Cosine Loss for Deep Face Recognition. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5265–5274. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Zheng, Z.; Chen, L.; Chen, C. Learning Semantic Representations for Unsupervised Domain Adaptation. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; Volume 80, pp. 5423–5432. [Google Scholar]
- Ghosh, A.; Kumar, H.; Sastry, P.S. Robust Loss Functions under Label Noise for Deep Neural Networks. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI’17), San Francisco, CA, USA, 4–9 February 2017; pp. 1919–1925. [Google Scholar]
- Long, M.; CAO, Z.; Wang, J.; Jordan, M.I. Conditional Adversarial Domain Adaptation. In Advances in Neural Information Processing Systems; Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2018; Volume 31. [Google Scholar]
- Taufique, A.M.N.; Jahan, C.S.; Savakis, A. ConDA: Continual Unsupervised Domain Adaptation. arXiv 2021, arXiv:2103.11056. [Google Scholar]
- Wang, J.; Sun, K.; Cheng, T.; Jiang, B.; Deng, C.; Zhao, Y.; Liu, D.; Mu, Y.; Tan, M.; Wang, X.; et al. Deep high-resolution representation learning for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 43, 3349–3364. [Google Scholar] [CrossRef] [Green Version]
- Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010; pp. 270–279. [Google Scholar]
- Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Jiang, H.; Gu, X.; Peng, J.; Li, W.; Hong, L.; Tao, C. CLRS: Continual Learning Benchmark for Remote Sensing Image Scene Classification. Sensors 2020, 20, 1226. [Google Scholar] [CrossRef] [Green Version]
- Lam, D.; Kuzma, R.; McGee, K.; Dooley, S.; Laielli, M.; Klaric, M.; Bulatov, Y.; McCord, B. xView: Objects in context in overhead imagery. arXiv 2018, arXiv:1802.07856. [Google Scholar]
- Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A large-scale dataset for object detection in aerial images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3974–3983. [Google Scholar]
AID Classes | Number of Samples | UCM Classes | Number of Samples |
---|---|---|---|
Airport | 360 | Airplane | 100 |
Parking | 390 | Parking Lot | 100 |
Storage Tank | 360 | Storage Tank | 100 |
Beach | 400 | Beach | 100 |
Forest | 350 | Forest | 100 |
River | 410 | River | 100 |
Baseball Field | 220 | Baseball Diamond | 100 |
Medium Residential | 290 | Medium Residential | 100 |
Sparse Residential | 300 | Sparse Residential | 100 |
NWPU Classes | Number of Samples | CLRS Classes | Number of Samples |
---|---|---|---|
Airplane | 700 | Airplane | 600 |
Bridge | 700 | Bridge | 600 |
Parking | 700 | Parking | 600 |
Railway Station | 700 | Parking | 600 |
Runway | 700 | Parking | 600 |
Storage Tank | 700 | Storage Tank | 600 |
DOTA Classes | Number of Samples | Augmented Samples | xView Classes | Number of Samples | Augmented Samples |
---|---|---|---|---|---|
Large Vehicle | 5000 | 0 | Large Vehicle | 5000 | 0 |
Plane | 5000 | 0 | Plane | 1159 | 3841 |
Ship | 5000 | 0 | Ship | 4476 | 524 |
Small Vehicle | 5000 | 0 | Small Vehicle | 5000 | 0 |
Storage Tank | 2126 | 2874 | Storage Tank | 1447 | 3553 |
Method | Base Network | Code Repository |
---|---|---|
SymNets | ResNet-50 | https://github.com/YBZh/SymNets (accessed on 1 March 2021) |
RSDA | ResNet-50 | https://github.com/XJTU-XGU/RSDA (accessed on 1 March 2021) |
CDAN-GD | ResNet-50 | https://github.com/cuishuhao/GVB/tree/master/CDAN-GD (accessed on 1 March 2021) |
GVB-GD | ResNet-50 | https://github.com/cuishuhao/GVB/tree/master/GVB-GD (accessed on 1 March 2021) |
UAN | ResNet-50 | https://github.com/thuml/Universal-Domain-Adaptation (accessed on 1 November 2021) |
SHOT | ResNet-50 | https://github.com/tim-learn/SHOT (accessed on 1 March 2021) |
SRDC | ResNet-50 | https://github.com/huitangtang/SRDC-CVPR2020 (accessed on 1 March 2021) |
Method | AID→UCM | UCM→AID | ||||||
---|---|---|---|---|---|---|---|---|
Accuracy | F1 Score | Accuracy | F1 Score | |||||
Before | After | Before | After | Before | After | Before | After | |
SymNets | 81.75 ± 1.25 | 99.15 ± 0.22 | 0.83 | 0.98 | 75.85 ± 1.03 | 98.37 ± 0.11 | 0.79 | 0.97 |
RSDA | 87.44 ± 1.62 | 98.67 ± 0.26 | 0.87 | 0.99 | 82.76 ± 0.85 | 98.15 ± 0.12 | 0.85 | 0.98 |
CDAN-GD | 84.53 ± 1.49 | 97.37 ± 0.26 | 0.79 | 0.97 | 80.43± 1.21 | 97.20 ± 0.27 | 0.8 | 0.97 |
GVB-GD | 84.39 ± 1.02 | 97.63 ± 0.26 | 0.84 | 0.96 | 81.8 ± 0.40 | 97.41 ± 0.18 | 0.79 | 0.97 |
UAN | 82.44 ± 0.01 | 84.24 ± 0.32 | 0.79 | 0.81 | 78.41 ± 0.46 | 85.34 ± 0.08 | 0.76 | 0.81 |
SHOT | 83.28 ± 0.80 | 98.80 ± 0.26 | 0.80 | 0.99 | 77.38 ± 0.78 | 98.55 ± 0.14 | 0.76 | 0.98 |
SRDC | 84.97 ± 0.14 | 95.57 ± 0.56 | 0.82 | 0.96 | 79.91± 0.94 | 95.89 ± 0.79 | 0.76 | 0.97 |
Method | CLRS→NWPU | NWPU→CLRS | ||||||
---|---|---|---|---|---|---|---|---|
Accuracy | F1 Score | Accuracy | F1 Score | |||||
Before | After | Before | After | Before | After | Before | After | |
SymNets | 94.42 ± 0.51 | 98.11 ± 0.17 | 0.94 | 0.98 | 87.81 ± 0.69 | 95.51 ± 0.43 | 0.89 | 0.95 |
RSDA | 94.26 ± 0.66 | 97.66 ± 0.13 | 0.87 | 0.99 | 89.00 ± 0.53 | 94.61 ± 0.27 | 0.89 | 0.93 |
CDAN-GD | 95.57 ± 0.21 | 97.14 ± 0.21 | 0.96 | 0.98 | 88.34 ± 1.09 | 94.51 ± 0.77 | 0.86 | 0.95 |
GVB-GD | 96.19 ± 0.36 | 97.16 ± 0.33 | 0.97 | 0.98 | 89.25 ± 1.67 | 93.86 ± 0.81 | 0.91 | 0.94 |
UAN | 94.29 ± 0.23 | 91.79 ± 0.11 | 0.93 | 0.91 | 84.48 ± 0.28 | 90.63 ± 0.10 | 0.84 | 0.90 |
SHOT | 94.41 ± 0.25 | 98.27 ± 0.13 | 0.94 | 0.98 | 87.49 ± 0.39 | 96.14 ± 0.13 | 0.88 | 0.96 |
SRDC | 94.59 ± 0.50 | 97.68 ± 0.18 | 0.95 | 0.98 | 87.31 ± 0.64 | 93.51 ± 0.54 | 0.87 | 0.93 |
Method | DOTA→xView | xView→DOTA | ||||||
---|---|---|---|---|---|---|---|---|
Accuracy | F1 Score | Accuracy | F1 Score | |||||
Before | After | Before | After | Before | After | Before | After | |
SymNets | 65.67 ± 0.52 | 70.82 ± 0.85 | 0.66 | 0.72 | 69.44 ± 0.56 | 95.88 ± 0.76 | 0.68 | 0.96 |
RSDA | 64.33 ± 1.19 | 68.44 ± 1.28 | 0.66 | 0.71 | 77.07 ± 1.18 | 87.93 ± 4.22 | 0.77 | 0.93 |
CDAN-GD | 64.74 ± 2.07 | 75.21 ± 1.22 | 0.64 | 0.75 | 71.84 ± 2.38 | 83.17 ± 3.28 | 0.66 | 0.84 |
GVB-GD | 64.43 ± 2.07 | 73.41 ± 2.04 | 0.61 | 0.76 | 70.25 ± 1.44 | 84.84 ± 2.17 | 0.69 | 0.73 |
UAN | 62.74 ± 0.17 | 68.13 ± 0.43 | 0.61 | 0.66 | 68.71 ± 0.22 | 80.78 ± 0.40 | 0.68 | 0.79 |
SHOT | 67.86 ± 0.38 | 75.36 ± 0.69 | 0.67 | 0.73 | 71.19 ± 1.37 | 80.46 ± 2.37 | 0.69 | 0.79 |
SRDC | 66.44 ± 0.36 | 70.50 ± 1.39 | 0.70 | 0.72 | 72.39 ± 2.14 | 84.88 ± 7.13 | 0.66 | 0.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagananda, N.; Taufique, A.M.N.; Madappa, R.; Jahan, C.S.; Minnehan, B.; Rovito, T.; Savakis, A. Benchmarking Domain Adaptation Methods on Aerial Datasets. Sensors 2021, 21, 8070. https://doi.org/10.3390/s21238070
Nagananda N, Taufique AMN, Madappa R, Jahan CS, Minnehan B, Rovito T, Savakis A. Benchmarking Domain Adaptation Methods on Aerial Datasets. Sensors. 2021; 21(23):8070. https://doi.org/10.3390/s21238070
Chicago/Turabian StyleNagananda, Navya, Abu Md Niamul Taufique, Raaga Madappa, Chowdhury Sadman Jahan, Breton Minnehan, Todd Rovito, and Andreas Savakis. 2021. "Benchmarking Domain Adaptation Methods on Aerial Datasets" Sensors 21, no. 23: 8070. https://doi.org/10.3390/s21238070
APA StyleNagananda, N., Taufique, A. M. N., Madappa, R., Jahan, C. S., Minnehan, B., Rovito, T., & Savakis, A. (2021). Benchmarking Domain Adaptation Methods on Aerial Datasets. Sensors, 21(23), 8070. https://doi.org/10.3390/s21238070