A Comprehensive Study of Anomaly Detection Schemes in IoT Networks Using Machine Learning Algorithms
Abstract
:1. Introduction
- First, machine learning models, specifically with classical algorithms, are shallow to extract features that can truly represent underlying data to discriminate anomaly events from normal ones.
- Second, running machine learning models can consume extensive resources, making it challenging to deploy such models on resource-constrained devices.
- Third, it requires massive data for training machine learning models to archive high accuracy in anomaly detection. Therefore, machine learning models may not capture all of the cyber-attacks or suspicious events due to training data. This means that machine learning suffers from both false positives and false negatives in some circumstances.
2. Significance of Anomaly Detection in the IoT
3. Challenges in IoT Anomaly Detection Using Machine Learning
3.1. Scarcity of IoT Resources
3.2. Profiling Normal Behaviours
3.3. Dimensionality of Data
3.4. Context Information
3.5. Lack of Machine Learning Models Resiliency against Adversarial Attacks
4. Machine Learning Techniques for Detecting Anomalies in the IoT
4.1. Detection Schemes Based on Machine Learning Algorithms
4.2. Training Detection Schemes Based on Federated Learning Algorithms
4.3. Detection Mechanisms Based on Data Sources and Dimensions
4.3.1. Univariate Using Non-Regressive Scheme
4.3.2. Univariate Using Regressive Scheme
4.3.3. Multivariate Using Regressive Scheme
5. Analysis of Machine Learning for IoT Anomaly Detection
5.1. Collaborative Architecture for IoT Anomaly Detection
5.2. Datasets and Algorithms for IoT Anomaly Detection
5.3. Resource Requirements of IoT Anomaly Detection
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Alsoufi, M.A.; Razak, S.; Siraj, M.M.; Nafea, I.; Ghaleb, F.A.; Saeed, F.; Nasser, M. Anomaly-Based Intrusion Detection Systems in IoT Using Deep Learning: A Systematic Literature Review. Appl. Sci. 2021, 11, 8383. [Google Scholar] [CrossRef]
- Njilla, L.; Pearlstein, L.; Wu, X.; Lutz, A.; Ezekiel, S. Internet of Things Anomaly Detection using Machine Learning. In Proceedings of the 2019 IEEE Applied Imagery Pattern Recognition Workshop (A.I.P.R.), Washington, DC, USA, 15–17 October 2019; pp. 1–6. [Google Scholar]
- Cook, A.A.; Mısırlı, G.; Fan, Z. Anomaly Detection for IoT Time-Series Data: A Survey. IEEE Internet Things J. 2020, 7, 6481–6494. [Google Scholar] [CrossRef]
- Cauteruccio, F.; Cinelli, L.; Corradini, E.; Terracina, G.; Ursino, D.; Virgili, L.; Savaglio, C.; Liotta, A.; Fortino, G. A Framework for Anomaly Detection and Classification in Multiple IoT Scenarios. Future Gener. Comput. Syst. 2021, 114, 322–335. [Google Scholar] [CrossRef]
- Doshi, R.; Apthorpe, N.; Feamster, N. Machine Learning DDoS Detection for Consumer Internet of Things Devices. In Proceedings of the 2018 IEEE Security and Privacy Workshops (S.P.W.), San Francisco, CA, USA, 24 May 2018; pp. 29–35. [Google Scholar]
- Hwang, R.H.; Peng, M.C.; Huang, C.W.; Lin, P.C.; Nguyen, V.L. An Unsupervised Deep Learning Model for Early Network Traffic Anomaly Detection. IEEE Access 2020, 8, 30387–30399. [Google Scholar] [CrossRef]
- Manimurugan, S.; Al-Mutairi, S.; Aborokbah, M.M.; Chilamkurti, N.; Ganesan, S.; Patan, R. Effective Attack Detection in Internet of Medical Things Smart Environment Using a Deep Belief Neural Network. IEEE Access 2020, 8, 77396–77404. [Google Scholar] [CrossRef]
- Protogerou, A.; Papadopoulos, S.; Drosou, A.; Tzovaras, D.; Refanidis, I. A Graph Neural Network Method for Distributed Anomaly Detection in IoT. Evol. Syst. 2021, 12, 19–36. [Google Scholar] [CrossRef]
- Cauteruccio, F.; Fortino, G.; Guerrieri, A.; Liotta, A.; Mocanu, D.C.; Perra, C.; Terracina, G.; Torres Vega, M. Short-long term anomaly detection in wireless sensor networks based on machine learning and multi-parameterized edit distance. Inf. Fusion 2019, 52, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.; Islam, M.M.; Zarif, M.I.I.; Hashem, M. Attack and Anomaly Detection in IoT Sensors in IoT Sites Using Machine Learning Approaches. Internet Things 2019, 7, 100059. [Google Scholar] [CrossRef]
- AL-Hawawreh, M.; Moustafa, N.; Sitnikova, E. Identification of Malicious Activities in Industrial Internet of Things Based on Deep Learning Models. J. Inf. Secur. Appl. 2018, 41, 1–11. [Google Scholar] [CrossRef]
- Shukla, R.; Sengupta, S. Scalable and Robust Outlier Detector using Hierarchical Clustering and Long Short-Term Memory (L.S.T.M.) Neural Network for the Internet of Things. Internet Things 2020, 9, 100167. [Google Scholar] [CrossRef]
- Yin, C.; Zhang, S.; Wang, J.; Xiong, N.N. Anomaly Detection Based on Convolutional Recurrent Autoencoder for IoT Time Series. IEEE Trans. Syst. Man Cybern. Syst. 2020, 1–11. [Google Scholar] [CrossRef]
- Tsogbaatar, E.; Bhuyan, M.H.; Taenaka, Y.; Fall, D.; Gonchigsumlaa, K.; Elmroth, E.; Kadobayashi, Y. SDN-Enabled IoT Anomaly Detection Using Ensemble Learning. I.F.I.P. In International Conference on Artificial Intelligence Applications and Innovations; Springer International Publishing: Cham, Switzerland, 2020; pp. 268–280. [Google Scholar]
- Diro, A.A.; Chilamkurti, N. Distributed Attack Detection Scheme Using Deep Learning Approach for Internet of Things. Future Gener. Comput. Syst. 2018, 82, 761–768. [Google Scholar] [CrossRef]
- Farshchi, M.; Weber, I.; Della Corte, R.; Pecchia, A.; Cinque, M.; Schneider, J.G.; Grundy, J. Contextual Anomaly Detection for a Critical Industrial System Based on Logs and Metrics. In Proceedings of the 2018 14th European Dependable Computing Conference (E.D.C.C.), Iasi, Romania, 10–14 September 2018; pp. 140–143. [Google Scholar]
- Ferrari, P.; Rinaldi, S.; Sisinni, E.; Colombo, F.; Ghelfi, F.; Maffei, D.; Malara, M. Performance Evaluation of Full-Cloud and Edge-Cloud Architectures for Industrial IoT Anomaly Detection Based on Deep Learning. In Proceedings of the 2019 II Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0 IoT), Naples, Italy, 4–6 June 2019; pp. 420–425. [Google Scholar]
- Bhatia, R.; Benno, S.; Esteban, J.; Lakshman, T.V.; Grogan, J. Unsupervised Machine Learning for Network-Centric Anomaly Detection in IoT. In Proceedings of the 3rd A.C.M. CoNEXT Workshop on Big DAta, Machine Learning and Artificial Intelligence for Data Communication Networks, Orlando, FL, USA, 9 December 2019; pp. 42–48. [Google Scholar]
- Savic, M.; Lukic, M.; Danilovic, D.; Bodroski, Z.; Bajovic, D.; Mezei, I.; Vukobratovic, D.; Skrbic, S.; Jakovetic, D. Deep Learning Anomaly Detection for Cellular IoT With Applications in Smart Logistics. IEEE Access 2021, 9, 59406–59419. [Google Scholar] [CrossRef]
- Ngo, M.V.; Luo, T.; Chaouchi, H.; Quek, T.S. Contextual-Bandit Anomaly Detection for IoT Data in Distributed Hierarchical Edge Computing. In Proceedings of the 2020 IEEE 40th International Conference on Distributed Computing Systems (I.C.D.C.S.), Singapore, 29 November–1 December 2020; pp. 1227–1230. [Google Scholar]
- Alrashdi, I.; Alqazzaz, A.; Aloufi, E.; Alharthi, R.; Zohdy, M.; Ming, H. AD-IoT: Anomaly Detection of IoT Cyberattacks in Smart City Using Machine Learning. In Proceedings of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (C.C.W.C.), Las Vegas, NV, USA, 7–9 January 2019; pp. 305–310. [Google Scholar]
- Utomo, D.; Hsiung, P.A. Anomaly Detection at the IoT Edge using Deep Learning. In Proceedings of the 2019 IEEE International Conference on Consumer Electronics—Taiwan (ICCE-TW), Yilan, Taiwan, 20–22 May 2019; pp. 1–2. [Google Scholar]
- Cheng, Y.; Xu, Y.; Zhong, H.; Liu, Y. Leveraging Semisupervised Hierarchical Stacking Temporal Convolutional Network for Anomaly Detection in IoT Communication. IEEE Internet Things J. 2021, 8, 144–155. [Google Scholar] [CrossRef]
- Han, N.; Gao, S.; Li, J.; Zhang, X.; Guo, J. Anomaly Detection in Health Data Based on Deep Learning. In Proceedings of the 2018 International Conference on Network Infrastructure and Digital Content (IC-NIDC), Guiyang, China, 22–24 August 2018; pp. 188–192. [Google Scholar]
- Chalapathy, R.; Toth, E.; Chawla, S. Group Anomaly Detection Using Deep Generative Models. In Machine Learning and Knowledge Discovery in Databases; Springer International Publishing: Cham, Switzerland, 2019; pp. 173–189. [Google Scholar]
- Nguyen, T.D.; Marchal, S.; Miettinen, M.; Fereidooni, H.; Asokan, N.; Sadeghi, A.R. DÏoT: A Federated Self-learning Anomaly Detection System for IoT. In Proceedings of the 2019 IEEE 39th International Conference on Distributed Computing Systems (I.C.D.C.S.), Dallas, TX, USA, 7–10 July 2019; pp. 756–767. [Google Scholar]
- He, Y.; Peng, Y.; Wang, S.; Liu, D.; Leong, P.H.W. A Structured Sparse Subspace Learning Algorithm for Anomaly Detection in UAV Flight Data. IEEE Trans. Instrum. Meas. 2018, 67, 90–100. [Google Scholar] [CrossRef]
- Himeur, Y.; Ghanem, K.; Alsalemi, A.; Bensaali, F.; Amira, A. Artificial Intelligence Based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives. Appl. Energy 2021, 287, 116601. [Google Scholar] [CrossRef]
- Piscitelli, M.S.; Brandi, S.; Capozzoli, A.; Xiao, F. A Data Analytics-Based Tool for The Detection and Diagnosis of Anomalous Daily Energy Patterns in Buildings. Build. Simul. 2021, 14, 131–147. [Google Scholar] [CrossRef]
- Kim, D.; Yang, H.; Chung, M.; Cho, S.; Kim, H.; Kim, M.; Kim, K.; Kim, E. Squeezed Convolutional Variational AutoEncoder for Unsupervised Anomaly Detection in Edge Device Industrial Internet of Things. In Proceedings of the 2018 International Conference on Information and Computer Technologies (I.C.I.C.T.), DeKalb, IL, USA, 23–25 March 2018; pp. 67–71. [Google Scholar]
- Kanawaday, A.; Sane, A. Machine Learning for Predictive Maintenance of Industrial Machines Using IoT Sensor Data. In Proceedings of the 2017 8th IEEE International Conference on Software Engineering and Service Science (I.C.S.E.S.S.), Beijing, China, 24–26 November 2017; pp. 87–90. [Google Scholar]
- Shah, G.; Tiwari, A. Anomaly Detection in IIoT: A Case Study Using Machine Learning. In Proceedings of the The A.C.M. India Joint International Conference on Data Science and Management of Data. Association for Computing Machinery, Goa, India, 11–13 January 2018; pp. 295–300. [Google Scholar]
- Oh, D.Y.; Yun, I.D. Residual Error Based Anomaly Detection Using Auto-Encoder in S.M.D. Machine Sound. Sensors 2018, 18, 1308. [Google Scholar] [CrossRef] [Green Version]
- Giannoni, F.; Mancini, M.; Marinelli, F. Anomaly Detection Models for IoT Time Series Data. arXiv 2018, arXiv:abs/1812.00890. [Google Scholar]
- Moghaddass, R.; Wang, J. A Hierarchical Framework for Smart Grid Anomaly Detection Using Large-Scale Smart Meter Data. IEEE Trans. Smart Grid 2018, 9, 5820–5830. [Google Scholar] [CrossRef]
- Passerini, F.; Tonello, A.M. Smart Grid Monitoring Using Power Line Modems: Anomaly Detection and Localization. IEEE Trans. Smart Grid 2019, 10, 6178–6186. [Google Scholar] [CrossRef] [Green Version]
- Farajollahi, M.; Shahsavari, A.; Mohsenian-Rad, H. Location Identification of Distribution Network Events Using Synchrophasor Data. In Proceedings of the 2017 North American Power Symposium (NAPS), Morgantown, WV, USA, 17–19 September 2017; pp. 1–6. [Google Scholar]
- Yip, S.C.; Tan, W.N.; Tan, C.; Gan, M.T.; Wong, K. An Anomaly Detection Framework for Identifying Energy Theft and Defective Meters in Smart Grids. Int. J. Electr. Power Energy Syst. 2018, 101, 189–203. [Google Scholar] [CrossRef]
- El-Wakeel, A.S.; Li, J.; Rahman, M.T.; Noureldin, A.; Hassanein, H.S. Monitoring Road Surface Anomalies Towards Dynamic Road Mapping for Future Smart Cities. In Proceedings of the 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Montreal, QC, Canada, 14–16 November 2017; pp. 828–832. [Google Scholar]
- Kong, X.; Song, X.; Xia, F.; Guo, H.; Wang, J.; Tolba, A. LoTAD: Long-Term Traffic Anomaly Detection Based on Crowdsourced Bus Trajectory Data. World Wide Web 2018, 21, 825–847. [Google Scholar] [CrossRef]
- Bakar, U.A.B.U.A.; Ghayvat, H.; Hasanm, S.F.; Mukhopadhyay, S.C. Activity and Anomaly Detection in Smart Home: A Survey. In Next Generation Sensors and Systems; Springer International Publishing: Cham, Switzerland, 2016; pp. 191–220. [Google Scholar]
- Alexopoulos, N.; Vasilomanolakis, E.; Ivánkó, N.R.; Mühlhäuser, M. Towards Blockchain-Based Collaborative Intrusion Detection Systems. In Critical Information Infrastructures Security; Springer International Publishing: Cham, Switzerland, 2018; pp. 107–118. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective. MIT Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Chadha, G.S.; Islam, I.; Schwung, A.; Ding, S.X. Deep Convolutional Clustering-Based Time Series Anomaly Detection. Sensors 2021, 21, 5488. [Google Scholar] [CrossRef]
- Jiang, J.; Han, G.; Liu, L.; Shu, L.; Guizani, M. Outlier Detection Approaches Based on Machine Learning in the Internet-of-Things. IEEE Wirel. Commun. 2020, 27, 53–59. [Google Scholar] [CrossRef]
- Mothukuri, V.; Khare, P.; Parizi, R.M.; Pouriyeh, S.; Dehghantanha, A.; Srivastava, G. Federated Learning-based Anomaly Detection for IoT Security Attacks. IEEE Internet Things J. (Early Access) 2021. [Google Scholar] [CrossRef]
- Liu, Y.; Garg, S.; Nie, J.; Zhang, Y.; Xiong, Z.; Kang, J.; Hossain, M.S. Deep Anomaly Detection for Time-Series Data in Industrial IoT: A Communication-Efficient On-Device Federated Learning Approach. IEEE Internet Things J. 2021, 8, 6348–6358. [Google Scholar] [CrossRef]
- Lee, H.; Kim, J.; Ahn, S.; Hussain, R.; Cho, S.; Son, J. Digestive neural networks: A novel defense strategy against inference attacks in federated learning. Comput. Secur. 2021, 109, 102378. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.; Yang, Y.; Ma, X.; Liu, J. Poisoning attacks and countermeasures in intelligent networks: Status quo and prospects. Digit. Commun. Netw. (Early Access) 2021. [Google Scholar] [CrossRef]
- Meng, W.; Tischhauser, E.W.; Wang, Q.; Wang, Y.; Han, J. When Intrusion Detection Meets Blockchain Technology: A Review. IEEE Access 2018, 6, 10179–10188. [Google Scholar] [CrossRef]
- Novo, O. Blockchain Meets IoT: An Architecture for Scalable Access Management in IoT. IEEE Internet Things J. 2018, 5, 1184–1195. [Google Scholar] [CrossRef]
- Dorri, A.; Kanhere, S.S.; Jurdak, R. Towards an Optimized BlockChain for IoT. In Proceedings of the 2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI), Pittsburgh, PA, USA, 18–21 April 2017; pp. 173–178. [Google Scholar]
- Özyılmaz, K.R.; Yurdakul, A. Work-in-Progress: Integrating low-Power IoT Devices to a Blockchain-Based Infrastructure. In Proceedings of the 2017 International Conference on Embedded Software (E.M.S.O.F.T.), Seoul, Korea, 15–20October 2017; pp. 1–2. [Google Scholar]
- Huh, S.; Cho, S.; Kim, S. Managing IoT Devices Using Blockchain Platform. In Proceedings of the 2017 19th International Conference on Advanced Communication Technology (I.C.A.C.T.), PyeongChang, Korea, 19–22 February 2017; pp. 464–467. [Google Scholar]
- Alsoufi, M.A.; Razak, S.; Siraj, M.M.; Ali, A.; Nasser, M.; Abdo, S. Anomaly Intrusion Detection Systems in IoT Using Deep Learning Techniques: A Survey. In Innovative Systems for Intelligent Health Informatics; Springer International Publishing: Cham, Switzerland, 2021; pp. 659–675. [Google Scholar]
- Meidan, Y.; Bohadana, M.; Mathov, Y.; Mirsky, Y.; Shabtai, A.; Breitenbacher, D.; Elovici, Y. N-BaIoT—Network-Based Detection of IoT Botnet Attacks Using Deep Autoencoders. IEEE Pervasive Comput. 2018, 17, 12–22. [Google Scholar] [CrossRef] [Green Version]
- Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization. In Proceedings of the 4th International Conference on Information Systems Security and Privacy (I.C.I.S.S.P. 2018), Funchal, Portugal, 22–24 January 2018; pp. 108–116. [Google Scholar]
- Kolias, C.; Kambourakis, G.; Stavrou, A.; Gritzalis, S. Intrusion Detection in 802.11 Networks: Empirical Evaluation of Threats and a Public Dataset. IEEE Commun. Surv. Tutor. 2016, 18, 184–208. [Google Scholar] [CrossRef]
- Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). In Proceedings of the 2015 Military Communications and Information Systems Conference (MilCIS), Canberra, Australia, 10–12 November 2015; pp. 1–6. [Google Scholar]
- Tavallaee, M.; Bagheri, E.; Lu, W.; Ghorbani, A.A. A detailed analysis of the KDD CUP 99 data set. In Proceedings of the 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 8–10 July 2009; pp. 1–6. [Google Scholar]
- Malaiya, R.K.; Kwon, D.; Suh, S.C.; Kim, H.; Kim, I.; Kim, J. An Empirical Evaluation of Deep Learning for Network Anomaly Detection. IEEE Access 2019, 7, 140806–140817. [Google Scholar] [CrossRef]
- Stolfo, S.; Fan, W.; Lee, W.; Prodromidis, A.; Chan, P. Cost-based modeling for fraud and intrusion detection: Results from the J.A.M. project. In Proceedings of the DARPA Information Survivability Conference and Exposition, Hilton Head, SC, USA, 25–27 January 2000; Volume 2, pp. 130–144. [Google Scholar]
- Kamat, P.; Sugandhi, R. Anomaly Detection for Predictive Maintenance in Industry 4.0-A Survey. In Proceedings of the E3S Web of Conferences, Pune City, India, 18–20 December 2019; p. 02007. [Google Scholar]
- Bovenzi, G.; Aceto, G.; Ciuonzo, D.; Persico, V.; Pescapé, A. A Hierarchical Hybrid Intrusion Detection Approach in IoT Scenarios. In Proceedings of the GLOBECOM 2020—2020 IEEE Global Communications Conference, Virtual Event, Taiwan, 7–11 December 2020; pp. 1–7. [Google Scholar]
ANOMALY TYPES | ||||
---|---|---|---|---|
Points | Contextual | Collective | ||
APPLICATIONS | Generic | [6] | [7] | [8] |
[9] | [10] | |||
[11] | ||||
[12] | ||||
[13] | ||||
[14] | ||||
[15] | ||||
Flights | [16] | |||
Industries | [17] | |||
[18] | ||||
[19] | ||||
Health | [20] | |||
Smart Cities | [21] | |||
Smart Grids | [22] | |||
Smart Home | [23] | [24] | ||
[25] | ||||
[26] | ||||
Unmanned Aerial Vehicles | [27] |
ANOMALY TYPES | ||||
---|---|---|---|---|
Points | Contextual | Collective | ||
MACHINE LEARNING SCHEMES | Supervised | RF [21] | RL [16] | CNN [24] |
DL [17] | LSTM [22] | GNN [8] | ||
Multiple [10] | ||||
AE-ANN [11] | ||||
LSTM [12] | ||||
AE-CNN [13] | ||||
Ensemble [14] | ||||
Unsupervised | AE-CNN [6] | Subspace [27] | AE [25] | |
AE [18] | Self-learning [26] | |||
Semi-Supervised | TCN [23] | AE-LSTM [20] | DNN [15] | |
DBN [7] |
Dataset | Published Year | IoT Specific | Dimensions | Normal Instances | Abnormal Instances |
---|---|---|---|---|---|
N-BaIoT [57] | 2018 | Yes | 115 | 555,932 | 6,545,967 |
CICIDS 2017 [58] | 2017 | No | 80 | 2,273,097 | 557,646 |
AWID [59] | 2015 | No | 155 | 530,785 | 44,858 |
UNSW-NB15 [60] | 2015 | No | 49 | 2,218,761 | 321,283 |
NLS-KDD [61] | 2009 | No | 43 | 77,054 | 71,463 |
Kyoto [62] | 2006 | No | 24 | 50,033,015 | 43,043,255 |
KDD CUP 1999 [63] | 1999 | No | 43 | 1,033,372 | 4,176,086 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diro, A.; Chilamkurti, N.; Nguyen, V.-D.; Heyne, W. A Comprehensive Study of Anomaly Detection Schemes in IoT Networks Using Machine Learning Algorithms. Sensors 2021, 21, 8320. https://doi.org/10.3390/s21248320
Diro A, Chilamkurti N, Nguyen V-D, Heyne W. A Comprehensive Study of Anomaly Detection Schemes in IoT Networks Using Machine Learning Algorithms. Sensors. 2021; 21(24):8320. https://doi.org/10.3390/s21248320
Chicago/Turabian StyleDiro, Abebe, Naveen Chilamkurti, Van-Doan Nguyen, and Will Heyne. 2021. "A Comprehensive Study of Anomaly Detection Schemes in IoT Networks Using Machine Learning Algorithms" Sensors 21, no. 24: 8320. https://doi.org/10.3390/s21248320
APA StyleDiro, A., Chilamkurti, N., Nguyen, V. -D., & Heyne, W. (2021). A Comprehensive Study of Anomaly Detection Schemes in IoT Networks Using Machine Learning Algorithms. Sensors, 21(24), 8320. https://doi.org/10.3390/s21248320