Relative Positioning in Remote Areas Using a GNSS Dual Frequency Smartphone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Campaigns and Equipment Setup
2.2. Processing Options
3. Satellite Visibility and Observed Signals
3.1. Satellite Visibility
3.2. Signal Quality
4. Results
4.1. Ambiguity Resolution Ratio
4.2. Test 1
4.3. Test 2
4.4. Test 3
4.5. Test 4
4.6. Test 5
4.7. Test 6
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pesyna, K.M.; Heath, R.W.; Humphreys, T.E. Centimeter Positioning with a Smartphone-Quality GNSS Antenna. In Proceedings of the 27th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS+ 2014), Tampa, FL, USA, 8–12 September 2014; pp. 1568–1577. [Google Scholar]
- Google, Inc. Android—Nougat. Available online: https://www.android.com/versions/nougat-7-0/ (accessed on 13 July 2021).
- Broadcom. BCM47755. Available online: https://www.broadcom.com/products/wireless/gnss-gps-socs/bcm47755 (accessed on 24 June 2021).
- Wang, L.; Li, Z.; Wang, N.; Wang, Z. Real-time GNSS precise point positioning for low-cost smart devices. GPS Solut. 2021, 25, 69. [Google Scholar] [CrossRef]
- Critchley-Marrows, J.; Fortunato, M.; Roberts, W. Accuracy for the Masses. Available online: https://insidegnss.com/accuracy-for-the-masses/ (accessed on 5 August 2021).
- Paziewski, J.; Fortunato, M.; Mazzoni, A.; Odolinski, R. An analysis of multi-GNSS observations tracked by recent Android smartphones and smartphone-only relative positioning results. Measurement 2021, 175, 109162. [Google Scholar] [CrossRef]
- Yan, W.; Bastos, L.; Magalhães, A.; Zhang, Y.; Wang, A. Assessing Android Smartphone Based GNSS Positioning Accuracy. In China Satellite Navigation Conference (CSNC) 2020 Proceedings: Volume III. CSNC 2020; Springer: Singapore, 2020; Volume 652. [Google Scholar] [CrossRef]
- Uradziński, M.; Bakuła, M. Assessment of Static Positioning Accuracy Using Low-Cost Smartphone GPS Devices for Geodetic Survey Points’ Determination and Monitoring. Appl. Sci. 2020, 10, 5308. [Google Scholar] [CrossRef]
- Robustelli, U.; Paziewski, J.; Pugliano, G. Observation Quality Assessment and Performance of GNSS Standalone Positioning with Code Pseudoranges of Dual-Frequency Android Smartphones. Sensors 2021, 21, 2125. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Gao, C.; Peng, Z.; Zhang, R.; Shang, R. Smartphone Positioning and Accuracy Analysis Based on Real-Time Regional Ionospheric Correction Model. Sensors 2021, 21, 3879. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Bochkati, M.; Lichtenberger, C.; Pany, T.; Darugna, F.; Wübbena, J.B. Smartphone-Based GNSS Positioning—Today and Tomorrow. Available online: https://insidegnss.com/smartphone-based-gnss-positioning-today-and-tomorrow/ (accessed on 5 August 2021).
- Zangenehnejad, F.; Gao, Y. GNSS smartphones positioning: Advances, challenges, opportunities, and future perspectives. Satell. Navig. 2021, 2, 24. [Google Scholar] [CrossRef] [PubMed]
- ESA. Front End–Navipedia. Available online: https://gssc.esa.int/navipedia/index.php/Front_End (accessed on 20 November 2021).
- EUREF Permanent GNSS Network. EPN Central Bureau @ Royal Observatory of Belgium. Available online: https://epncb.eu/ (accessed on 22 November 2021).
- Bundesamt für Kartographie und Geodäsie (BKG). Real-Time. Available online: https://igs.bkg.bund.de/ntrip/ (accessed on 22 November 2021).
- ESA. Earth Sciences-Navipedia. Available online: https://gssc.esa.int/navipedia/index.php/Earth_Sciences (accessed on 20 November 2021).
- Trimble Inc. GNSS Planning Online, 2017–2018. Available online: https://www.gnssplanning.com/#/charts (accessed on 21 November 2021).
- Geo++ GmbH. Geo++ RINEX Logger. Available online: https://play.google.com/store/apps/details?id=de.geopp.rinexlogger&hl=pt&gl=US (accessed on 17 November 2021).
- Septentrio, N.V. RxTools: GNSS Receiver Control and Analysis Software. Available online: https://www.septentrio.com/en/products/software/rxtools (accessed on 18 August 2021).
- Tim Everett, rtklibexplorer, RTKLIB Demo5. 2021. Available online: http://rtkexplorer.com/downloads/rtklib-code (accessed on 16 November 2021).
- Takasu, T. RTKLIB: An Open Source Program Package for GNSS Positioning (2007–2013). Available online: http://www.rtklib.com/ (accessed on 10 August 2021).
- Klobuchar, J.A. Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users. IEEE Trans. Aerosp. Electron. Syst. 1987, AES-23, 325–331. [Google Scholar] [CrossRef]
- Saastamoinen, J. Contributions to the theory of atmospheric refraction. Bull. Geod. 1973, 107, 13–34. [Google Scholar] [CrossRef]
- NOAA’s National Geodetic Survey (NGS). Global Navigation Satellite System (GNSS) Antenna Calibrations. Available online: https://www.ngs.noaa.gov/ANTCAL/ (accessed on 5 October 2021).
- Paziewski, J.; Sieradzki, R.; Baryla, R. Signal characterization and assessment of code GNSS positioning with low-power consumption smartphones. GPS Solut. 2019, 23, 98. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Shi, X.; Zhu, F.; Tao, X.; Wang, F. Quality analysis of multi-GNSS raw observations and a velocity-aided positioning approach based on smartphones. Adv. Space Res. 2019, 63, 2358–2377. [Google Scholar] [CrossRef]
- Crocetto, N.; Pingue, F.; Ponte, S.; Pugliano, G.; Sepe, V. Ionospheric error analysis in GPS measurements. Ann. Geophys. 2008, 51, 585–589. [Google Scholar] [CrossRef]
CORS | Baseline Length (km) | Receiver | Antenna | GNSS Systems | Network | Location |
---|---|---|---|---|---|---|
GAIA | 0.2 | Trimble Alloy | Trimble GNSS-Ti Choke Ring v2 | Galileo, GPS GLONASS | RENEP | Gaia Portugal |
VIGO | 121.1 | Trimble NETR9 | Trimble L1/L2 Dorne Margoli Choke Ring | Galileo, GPS GLONASS, BeiDou | ERGNSS | Vigo Spain |
CASC | 277.2 | Trimble Alloy | Trimble GNSS-Ti Choke Ring v2 | Galileo, GPS GLONASS | RENEP | Cascais Portugal |
CEUT | 645.5 | Trimble NETR9 | Trimble L1/L2 Dorne Margoli Choke Ring | Galileo, GPS GLONASS, BeiDou | ERGNSS | Ceuta Spain |
Galileo | GPS | Galileo + GPS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Test # | # SV Min. | # SV Max. | PDOP | # SV Min. | # SV Max. | PDOP | # SV Min. | # SV Max. | PDOP | Device |
1 | 3 | 7 | 3.7 | 7 | 12 | 1.7 | 11 | 17 | 1.4 | Smartphone A |
4 | 7 | 2.6 | 7 | 11 | 1.8 | 13 | 17 | 1.3 | Smartphone B | |
2 | 5 | 7 | 2.7 | 6 | 12 | 1.6 | 12 | 17 | 1.3 | Smartphone |
6 | 8 | 2.3 | 7 | 12 | 1.5 | 13 | 19 | 1.1 | Alloy | |
3 | 3 | 6 | 6.1 | 8 | 12 | 1.7 | 13 | 17 | 1.3 | Smartphone |
7 | 8 | 2.0 | 10 | 12 | 1.4 | 17 | 19 | 1.1 | PolaRx5 | |
4 | 3 | 6 | 7.3 | 6 | 11 | 1.7 | 10 | 16 | 1.4 | Smartphone |
6 | 9 | 2.3 | 8 | 11 | 1.6 | 15 | 18 | 1.2 | Alloy | |
5 | 4 | 7 | 4.1 | 6 | 10 | 1.9 | 11 | 16 | 1.5 | Smartphone |
8 | 11 | 1.8 | 8 | 11 | 1.6 | 16 | 20 | 1.1 | Alloy | |
6 | 1 | 5 | 4.1 | 7 | 12 | 1.6 | 9 | 16 | 1.4 | Smartphone |
5 | 9 | 2.3 | 9 | 12 | 1.6 | 15 | 20 | 1.1 | Alloy |
Flight Mode | Smartphone A | Smartphone B | |||||||
---|---|---|---|---|---|---|---|---|---|
E1 | L1 | E5a | L5 | E1 | L1 | E5a | L5 | ||
ON | AVE | 29.6 | 31.6 | 29.2 | 29.2 | 30.7 | 32.1 | 28.0 | 31.3 |
STD | 3.1 | 3.9 | 4.1 | 4.8 | 3.1 | 4.4 | 3.5 | 4.5 | |
MIN | 14.2 | 12.3 | 17.0 | 17.0 | 15.8 | 12.9 | 17.0 | 17.0 | |
MAX | 36.3 | 40.2 | 35.1 | 37.0 | 37.9 | 41.7 | 36.3 | 37.7 | |
OFF | AVE | 30.2 | 30.7 | 28.1 | 31.0 | 31.6 | 32.3 | 27.6 | 30.7 |
STD | 3.0 | 4.5 | 4.4 | 4.8 | 3.5 | 3.5 | 4.0 | 4.1 | |
MIN | 16.6 | 12.0 | 17.0 | 17.0 | 13.9 | 12.2 | 17.0 | 17.0 | |
MAX | 37.6 | 40.9 | 36.5 | 38.7 | 37.7 | 40.4 | 35.7 | 38.4 |
Smartphone A | Alloy | |||||||
---|---|---|---|---|---|---|---|---|
E1 | L1 | E5a | L5 | E1 | L1 | E5a | L5 | |
AVE | 38.6 | 37.9 | 34.3 | 34.8 | 46.3 | 44.3 | 46.3 | 46.4 |
STD | 4.9 | 6.3 | 4.3 | 5.2 | 5.1 | 5.3 | 5.2 | 5.6 |
MIN | 17.9 | 11.4 | 17.0 | 17.0 | 24.8 | 23.8 | 24.9 | 24.7 |
MAX | 46.1 | 48.3 | 40.8 | 42.8 | 52.6 | 51.2 | 52.3 | 54.2 |
Smartphone A | PolaRx5 | |||||||
---|---|---|---|---|---|---|---|---|
E1 | L1 | E5a | L5 | E1 | L1 | E5a | L5 | |
AVE | 36.2 | 39.6 | 31.3 | 33.7 | 40.8 | 44.2 | 43.1 | 47.3 |
STD | 3.3 | 3.8 | 4.9 | 3.9 | 5.4 | 6.1 | 5.2 | 5.9 |
MIN | 20.9 | 14.2 | 17.3 | 17.1 | 18.0 | 18.0 | 11.2 | 22.6 |
MAX | 43.4 | 46.9 | 41.8 | 39.6 | 48.0 | 51.3 | 50.4 | 54.1 |
CASC | CEUT | GAIA | VIGO | |||||
---|---|---|---|---|---|---|---|---|
FIX | Float | FIX | Float | FIX | Float | FIX | Float | |
Test 1 | 0.4% | 99.6% | 0.3% | 99.7% | 1.7% | 98.3% | 0.1% | 99.9% |
Test 2 | 0.9% | 99.1% | 0.0% | 100.0% | 89.3% | 10.7% | 8.3% | 91.7% |
Test 3 | 0.0% | 100.0% | 0.0% | 100.0% | 78.5% | 21.5% | 66.8% | 33.2% |
Test 4 | 11.0% | 89.0% | 1.0% | 99.0% | 83.3% | 16.7% | 20.3% | 79.7% |
Test 5 | 45.7% | 54.3% | 3.6% | 96.4% | 57.8% | 42.2% | 88.9% | 11.2% |
Test 6 | 6.4% | 93.6% | 10.7% | 89.3% | 15.8% | 84.2% | 6.8% | 93.2% |
CASC | CEUT | GAIA | VIGO | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E | N | U | E | N | U | E | N | U | E | N | U | |
AVE | −0.024 | −0.059 | −0.099 | −0.076 | −0.100 | −0.101 | −0.007 | 0.013 | −0.044 | −0.042 | 0.077 | −0.075 |
STD | 0.162 | 0.107 | 0.162 | 0.195 | 0.178 | 0.198 | 0.132 | 0.088 | 0.122 | 0.171 | 0.090 | 0.202 |
RMS | 0.160 | 0.120 | 0.186 | 0.205 | 0.200 | 0.218 | 0.129 | 0.087 | 0.126 | 0.172 | 0.117 | 0.211 |
CASC | CEUT | GAIA | VIGO | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mode | E | N | U | E | N | U | E | N | U | E | N | U | |
ON | AVE | −0.047 | −0.023 | −0.172 | −0.092 | −0.036 | −0.151 | −0.002 | 0.030 | −0.064 | −0.014 | 0.086 | −0.127 |
STD | 0.192 | 0.091 | 0.156 | 0.246 | 0.174 | 0.218 | 0.138 | 0.105 | 0.133 | 0.203 | 0.107 | 0.238 | |
RMS | 0.188 | 0.089 | 0.227 | 0.251 | 0.168 | 0.256 | 0.131 | 0.104 | 0.141 | 0.193 | 0.133 | 0.259 | |
OFF | AVE | −0.002 | −0.095 | −0.026 | −0.059 | −0.164 | −0.050 | −0.013 | −0.005 | −0.024 | −0.069 | 0.068 | −0.024 |
STD | 0.132 | 0.114 | 0.137 | 0.139 | 0.165 | 0.172 | 0.132 | 0.070 | 0.113 | 0.137 | 0.075 | 0.153 | |
RMS | 0.125 | 0.144 | 0.133 | 0.145 | 0.227 | 0.171 | 0.126 | 0.066 | 0.110 | 0.147 | 0.098 | 0.147 |
CASC | CEUT | GAIA | VIGO | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Smartphone | E | N | U | E | N | U | E | N | U | E | N | U | |
A | AVE | −0.093 | −0.041 | −0.159 | −0.190 | −0.127 | −0.122 | −0.070 | 0.015 | −0.076 | −0.125 | 0.084 | −0.126 |
STD | 0.097 | 0.090 | 0.142 | 0.185 | 0.162 | 0.174 | 0.126 | 0.076 | 0.123 | 0.131 | 0.096 | 0.199 | |
RMS | 0.131 | 0.095 | 0.208 | 0.259 | 0.200 | 0.205 | 0.138 | 0.074 | 0.139 | 0.176 | 0.124 | 0.227 | |
B | AVE | 0.044 | −0.077 | −0.039 | 0.038 | −0.072 | −0.080 | 0.055 | 0.011 | −0.012 | 0.041 | 0.069 | −0.025 |
STD | 0.188 | 0.124 | 0.164 | 0.132 | 0.196 | 0.227 | 0.110 | 0.103 | 0.118 | 0.170 | 0.088 | 0.201 | |
RMS | 0.184 | 0.140 | 0.161 | 0.131 | 0.200 | 0.230 | 0.118 | 0.098 | 0.112 | 0.167 | 0.109 | 0.192 |
CASC | CEUT | GAIA | VIGO | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E | N | U | E | N | U | E | N | U | E | N | U | |
AVE | −0.207 | 0.144 | −0.028 | −0.237 | 0.354 | 0.334 | 0.006 | 0.002 | 0.053 | 0.222 | −0.019 | 0.236 |
STD | 0.047 | 0.005 | 0.034 | 0.016 | 0.013 | 0.018 | 0.013 | 0.008 | 0.024 | 0.082 | 0.018 | 0.143 |
RMS | 0.045 | 0.021 | 0.002 | 0.056 | 0.125 | 0.112 | 0.000 | 0.000 | 0.003 | 0.056 | 0.001 | 0.076 |
CASC | CEUT | GAIA | VIGO | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E | N | U | E | N | U | E | N | U | E | N | U | ||
Mi8 | AVE | 0.087 | −0.013 | −0.160 | 0.048 | −0.122 | −0.059 | 0.062 | 0.003 | −0.097 | 0.082 | 0.072 | −0.074 |
STD | 0.121 | 0.112 | 0.229 | 0.036 | 0.325 | 0.362 | 0.092 | 0.018 | 0.091 | 0.064 | 0.051 | 0.049 | |
RMS | 0.132 | 0.092 | 0.246 | 0.057 | 0.292 | 0.301 | 0.097 | 0.015 | 0.122 | 0.097 | 0.083 | 0.085 | |
PolaRx5 | AVE | −0.047 | −0.213 | 0.244 | −0.043 | −0.173 | −0.053 | 0.000 | −0.003 | 0.008 | −0.009 | 0.067 | 0.025 |
STD | 0.105 | 0.050 | 0.169 | 0.116 | 0.235 | 0.182 | 0.009 | 0.019 | 0.044 | 0.007 | 0.005 | 0.057 | |
RMS | 0.098 | 0.216 | 0.280 | 0.104 | 0.258 | 0.158 | 0.007 | 0.015 | 0.037 | 0.011 | 0.067 | 0.053 |
CASC | CEUT | GAIA | VIGO | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E | N | U | E | N | U | E | N | U | E | N | U | |
AVE | 0.078 | −0.033 | 0.092 | 0.005 | −0.396 | −0.392 | −0.220 | −0.117 | −0.058 | 0.002 | −0.083 | 0.045 |
STD | 0.054 | 0.026 | 0.079 | 0.140 | 0.194 | 0.186 | 0.008 | 0.005 | 0.021 | 0.048 | 0.054 | 0.068 |
RMS | 0.018 | 0.004 | 0.030 | 0.020 | 0.194 | 0.188 | 0.048 | 0.014 | 0.004 | 0.002 | 0.010 | 0.007 |
CASC | CEUT | GAIA | VIGO | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E | N | U | E | N | U | E | N | U | E | N | U | |
AVE | 0.068 | 0.038 | 0.042 | 0.086 | 0.035 | 0.133 | −0.008 | −0.005 | 0.048 | −0.016 | −0.040 | −0.031 |
STD | 0.091 | 0.033 | 0.044 | 0.030 | 0.018 | 0.040 | 0.026 | 0.025 | 0.057 | 0.014 | 0.017 | 0.026 |
RMS | 0.010 | 0.003 | 0.004 | 0.012 | 0.002 | 0.019 | 0.001 | 0.001 | 0.008 | 0.001 | 0.003 | 0.002 |
CASC | CEUT | GAIA | VIGO | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
E | N | U | E | N | U | E | N | U | E | N | U | |
AVE | 0.084 | 0.240 | 0.195 | −0.117 | 0.441 | 0.329 | −0.191 | 0.010 | 0.296 | −0.355 | −0.054 | 0.223 |
STD | 0.168 | 0.033 | 0.076 | 0.209 | 0.077 | 0.098 | 0.083 | 0.006 | 0.117 | 0.123 | 0.064 | 0.049 |
RMS | 0.035 | 0.059 | 0.044 | 0.057 | 0.200 | 0.118 | 0.043 | 0.000 | 0.101 | 0.141 | 0.007 | 0.052 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magalhães, A.; Bastos, L.; Maia, D.; Gonçalves, J.A. Relative Positioning in Remote Areas Using a GNSS Dual Frequency Smartphone. Sensors 2021, 21, 8354. https://doi.org/10.3390/s21248354
Magalhães A, Bastos L, Maia D, Gonçalves JA. Relative Positioning in Remote Areas Using a GNSS Dual Frequency Smartphone. Sensors. 2021; 21(24):8354. https://doi.org/10.3390/s21248354
Chicago/Turabian StyleMagalhães, Américo, Luísa Bastos, Dalmiro Maia, and José Alberto Gonçalves. 2021. "Relative Positioning in Remote Areas Using a GNSS Dual Frequency Smartphone" Sensors 21, no. 24: 8354. https://doi.org/10.3390/s21248354
APA StyleMagalhães, A., Bastos, L., Maia, D., & Gonçalves, J. A. (2021). Relative Positioning in Remote Areas Using a GNSS Dual Frequency Smartphone. Sensors, 21(24), 8354. https://doi.org/10.3390/s21248354