The Effect of a Verbal Cognitive Task on Postural Sway Does Not Persist When the Task Is Over
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Dual-Task Procedures
2.3. Postural Control Metrics
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Acronym | Definition | Measurement | Connection to Balance |
---|---|---|---|
COG | Cognitive task | - | - |
PRE | Quiet standing before cognitive task | - | - |
POST | Quiet standing after cognitive task | - | - |
ML | Medial-lateral signal | Linear acceleration left/right | - |
V | Vertical signal | Linear acceleration up/down | - |
AP | Anterior–posterior signal | Linear acceleration forward/backward | - |
Accelerometry features | |||
RMS | Root mean square | Measure of spread (G) | Higher values indicate more sway |
NPL | Normalized path length | Measure of speed (G/s) | Higher values indicate more distance traveled, thus more frequent adjustments and poorer postural control |
CFR | Centroid frequency | Frequency that halves the power spectrum (Hz) | Lower values indicate poor postural control |
PFR | Peak frequency | Frequency with the most power (Hz) | High values indicate more frequent postural adjustments and thus poorer postural control |
BND | Bandwidth | Range of frequencies in the signal (Hz) | The larger the range, the more frequencies used to maintain balance |
ENTR | Entropy rate | Measure of the regularity of the signal, index from 0 to 1 | Values closer to 1 indicate high signal regularity; values closer to 0 indicate high signal randomness |
WE | Wavelet entropy | Measure of signal disorder, randomness | Values closer to 0 indicate ordered signals; high values indicate disordered signals with equivalent contributions from most frequencies |
SI | Cross entropy rate/Index of synchronization | Measure of signal predictability using past and present points from another signal, index from 0 to 1 | Values closer to 1 indicate signals are highly synchronized |
CORR | Cross correlation | Measure of similarity between two signals, index from 0 to 1 | Values closer to 1 indicate higher agreement between signals |
SKEW | Skewness of signal | Measure of asymmetry of amplitudes about the mean | Higher absolute values (positive or negative) indicate more asymmetry in postural control |
KURT | Kurtosis of signal | Measure of how spread out the amplitudes are from the mean | Higher values indicate more peaked distributions and thus less variable sway and fewer extreme outliers |
LZ | Lempel-Ziv complexity | Measure of the complexity of the signal | Higher values indicate less predictable, more complex signals and better postural control |
References
- Stevens, J.A.; Corso, P.S.; Finkelstein, E.A.; Miller, T.R. The costs of fatal and non-fatal falls among older adults. Inj. Prev. 2006, 12, 290–295. [Google Scholar] [CrossRef]
- Florence, C.S.; Bergen, G.; Atherly, A.; Burns, E.; Stevens, J.; Drake, C. Medical costs of fatal and nonfatal falls in older adults. J. Am. Geriatr. Soc. 2018, 66, 693–698. [Google Scholar] [CrossRef]
- Woollacott, M.; Shumway-Cook, A. Attention and the control of posture and gait: A review of an emerging area of research. Gait Posture 2002, 16, 1–14. [Google Scholar] [CrossRef]
- Huxhold, O.; Li, S.-C.; Schmiedek, F.; Lindenberger, U. Dual-tasking postural control: Aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res. Bull. 2006, 69, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, A.F.; Paul, G.; Hausdorff, J.M. Risk factors for falls among older adults: A review of the literature. Maturitas 2013, 75, 51–61. [Google Scholar] [CrossRef]
- Rosso, A.L.; Cenciarini, M.; Sparto, P.J.; Loughlin, P.J.; Furman, J.M.; Huppert, T.J. Neuroimaging of an attention demanding dual-task during dynamic postural control. Gait Posture 2017, 57, 193–198. [Google Scholar] [CrossRef]
- Bergamin, M.; Gobbo, S.; Zanotto, T.; Sieverdes, J.C.; Alberton, C.L.; Zaccaria, M.; Ermolao, A. Influence of age on postural sway during different dual-task conditions. Front. Aging Neurosci. 2014, 6, 271. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, S.I.; Redfern, M.S.; Jennings, J.R.; Furman, J.M. Interference between postural control and spatial vs. non-spatial auditory reaction time tasks in older adults. J. Vestib. Res. Equilib. Orientat. 2015, 25, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Potvin-Desrochers, A.; Richer, N.; Lajoie, Y. Cognitive tasks promote automatization of postural control in young and older adults. Gait Posture 2017, 57, 40–45. [Google Scholar] [CrossRef]
- Pang, M.Y.C.; Yang, L.; Ouyang, H.; Lam, F.M.H.; Huang, M.; Jehu, D.A. Dual-task exercise reduces cognitive-motor interference in walking and falls after stroke: A randomized controlled study. Stroke 2018, 49, 2990–2998. [Google Scholar] [CrossRef] [PubMed]
- Fraser, S.A.; Li, K.Z.H.; Berryman, N.; Desjardins-Crépeau, L.; Lussier, M.; Vadaga, K.; Lehr, L.; Vu, T.T.M.; Bosquet, L.; Bherer, L. Does combined physical and cognitive training improve dual-task balance and gait outcomes in sedentary older adults? Front. Hum. Neurosci. 2017, 10, 688. [Google Scholar] [CrossRef]
- Buckley, C.; Alcock, L.; McArdle, R.; Ur Rehman, R.Z.; Del Din, S.; Mazzà, C.; Yarnall, A.J.; Rochester, L. The role of movement analysis in diagnosing and monitoring neurodegenerative conditions: Insights from gait and postural control. Brain Sci. 2019, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Aizenstein, H.J.; Nebes, R.D.; Saxton, J.A.; Price, J.C.; Mathis, C.A.; Tsopelas, N.D.; Ziolko, S.K.; James, J.A.; Snitz, B.E.; Houck, P.R.; et al. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch. Neurol. 2008, 65, 1509–1517. [Google Scholar] [CrossRef] [PubMed]
- Ganguli, M.; Chang, C.C.H.; Snitz, B.E.; Saxton, J.A.; Vanderbilt, J.; Lee, C.W. Prevalence of mild cognitive impairment by multiple classifications: The monongahela-youghiogheny healthy aging team (MYHAt) project. Am. J. Geriatr. Psychiatry 2010, 18, 674–683. [Google Scholar] [CrossRef]
- Hoppes, C.W.; Huppert, T.J.; Whitney, S.L.; Dunlap, P.M.; Disalvio, N.L.; Alshebber, K.M.; Furman, J.M.; Kwon, Y.H.; Rosso, A.L. Changes in cortical activation during dual-task walking in individuals with and without visual vertigo. J. Neurol. Phys. Ther. 2020, 44, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Moe-Nilssen, R.; Helbostad, J.L. Trunk accelerometry as a measure of balance control during quiet standing. Gait Posture 2002, 16, 60–68. [Google Scholar] [CrossRef]
- Whitney, S.L.; Roche, J.L.; Marchetti, G.F.; Lin, C.C.; Steed, D.P.; Furman, G.R.; Musolino, M.C.; Redfern, M.S. A comparison of accelerometry and center of pressure measures during computerized dynamic posturography: A measure of balance. Gait Posture 2011, 33, 594–599. [Google Scholar] [CrossRef]
- Viscito, E.; Allebach, J.P. The analysis and design of multidimensional FIR perfect reconstruction filter banks for arbitrary sampling lattices. IEEE Trans. Circuits Syst. 1991, 38, 29–41. [Google Scholar] [CrossRef]
- Gopinath, R.A.; Burrus, C.S. On upsampling, downsampling, and rational sampling rate filter banks. IEEE Trans. Signal Process. 1994, 42, 812–824. [Google Scholar] [CrossRef]
- Sejdić, E.; Lowry, K.A.; Bellanca, J.; Perera, S.; Redfern, M.S.; Brach, J.S. Extraction of stride events from gait accelerometry during treadmill walking. IEEE J. Transl. Eng. Health Med. 2015, 4, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Alkathiry, A.A.; Sparto, P.J.; Freund, B.; Whitney, S.L.; Mucha, A.; Furman, J.M.; Collins, M.W.; Kontos, A.P. Sport-related concussion using accelerometers to record postural sway in adolescents with concussion: A cross-sectional study. J. Athl. Train. 2018, 53, 1166–1172. [Google Scholar] [CrossRef]
- Moe-Nilssen, R. A new method for evaluating motor control in gait under real-life environmental conditions. Part 1: The instrument. Clin. Biomech. 1998, 13, 320–327. [Google Scholar] [CrossRef]
- Prieto, T.E.; Myklebust, J.B.; Hoffmann, R.G.; Lovett, E.G.; Myklebust, B.M. Measures of postural steadiness: Differences between healthy young and elderly adults. IEEE Trans. Biomed. Eng. 1996, 43, 956–966. [Google Scholar] [CrossRef]
- Maurer, C.; Peterka, R.J. A new interpretation of spontaneous sway measures based on a simple model of human postural control. J. Neurophysiol. 2005, 93, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Sejdic, E.; Lowry, K.A.; Bellanca, J.; Redfern, M.S.; Brach, J.S. A comprehensive assessment of gait accelerometry signals in time, frequency and time-frequency domains. IEEE Trans. Neural. Syst. Rehabil. Eng. 2014, 22, 603–612. [Google Scholar] [CrossRef]
- Loughlin, P.J.; Redfern, M.S.; Furman, J.M. Nonstationarities of Postural Sway. IEEE Eng. Med. Biol. Mag. 2003, 22, 69–75. [Google Scholar] [CrossRef]
- Winter, D.A.; Patla, A.E.; Prince, F.; Ishac, M.; Gielo-perczak, K. Stiffness control of balance in quiet standing. J. Neurophysiol. 1998, 80, 1211–1221. [Google Scholar] [CrossRef]
- Manor, B.; Costa, M.D.; Kun, H.; Newton, E.; Starobinets, O.; Hyun, G.K.; Peng, C.K.; Novak, V.; Lipsitz, L.A. Physiological complexity and system adaptability: Evidence from postural control dynamics of older adults. J. Appl. Physiol. 2010, 109, 1786–1791. [Google Scholar] [CrossRef]
- Kang, H.G.; Costa, M.D.; Priplata, A.A.; Starobinets, O.V.; Goldberger, A.L.; Peng, C.K.; Kiely, D.K.; Cupples, L.A.; Lipsitz, L.A. Frailty and the degradation of complex balance dynamics during a dual-task protocol. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2009, 64, 1304–1311. [Google Scholar] [CrossRef] [PubMed]
- Donker, S.F.; Roerdink, M.; Greven, A.J.; Beek, P.J. Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control. Exp. Brain Res. 2007, 181, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Redfern, M.S.; Chambers, A.J.; Sparto, P.J.; Furman, J.M.; Jennings, J.R. Inhibition and decision-processing speed are associated with performance on dynamic posturography in older adults. Exp. Brain Res. 2019, 237, 37–45. [Google Scholar] [CrossRef]
- Redfern, M.S.; Jennings, J.R.; Martin, C.; Furman, J.M. Attention influences sensory integration for postural control in older adults. Gait Posture 2001, 14, 211–216. [Google Scholar] [CrossRef]
- Mendelson, D.N.; Redfern, M.S.; Nebes, R.D.; Richard Jennings, J. Inhibitory processes relate differently to balance/reaction time dual tasks in young and older adults. Aging Neuropsychol. Cogn. 2009, 17, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Salthouse, T.A. Aging and measures of processing speed. Biol. Psychol. 2000, 54, 35–54. [Google Scholar] [CrossRef]
- Wulf, G.; Prinz, W. Directing attention to movement effects enhances learning: A review. Psychon. Bull. Rev. 2001, 8, 648–660. [Google Scholar] [CrossRef] [PubMed]
- Polskaia, N.; Richer, N.; Dionne, E.; Lajoie, Y. Continuous cognitive task promotes greater postural stability than an internal or external focus of attention. Gait Posture 2015, 41, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Boisgontier, M.P.; Beets, I.A.M.; Duysens, J.; Nieuwboer, A.; Krampe, R.T.; Swinnen, S.P. Age-related differences in attentional cost associated with postural dual tasks: Increased recruitment of generic cognitive resources in older adults. Neurosci. Biobehav. Rev. 2013, 37, 1824–1837. [Google Scholar] [CrossRef]
- Mcnevin, N.H.; Wulf, G. Attentional focus on supra-postural tasks affects postural control. Hum. Mov. Sci. 2002, 21, 187–202. [Google Scholar] [CrossRef]
- Manchester, D.; Woollacott, M.; Zederbauer-Hylton, N.; Marin, O. Visual, vestibular and somatosensory contributions to balance control in the older adult. J. Gerontol. 1989, 44, M118–M127. [Google Scholar] [CrossRef]
- Lindemann, U.; Moe-Nilssen, R.; Nicolai, S.E.; Becker, C.; Chiari, L. Assessment of balance in unsupported standing with elderly inpatients by force plate and accelerometers. Aging Clin. Exp. Res. 2012, 24, 37–41. [Google Scholar] [CrossRef]
- Del Din, S.; Godfrey, A.; Coleman, S.; Galna, B.; Lord, S.; Rochester, L. Time-dependent changes in postural control in early Parkinson’s disease: What are we missing? time-dependent change may provide useful insights into PC in PD and effectiveness of intervention. Med. Biol. Eng. Comput. 2016, 54, 401–410. [Google Scholar] [CrossRef] [PubMed]
- St George, R.J.; Hinder, M.R.; Puri, R.; Walker, E.; Callisaya, M.L. Functional near-infrared spectroscopy reveals the compensatory potential of pre-frontal cortical activity for standing balance in young and older adults. Neuroscience 2021, 452, 208–218. [Google Scholar] [CrossRef] [PubMed]
Variable | Study 1 1 (n = 28) | Study 2 2 (n = 25) | Total (n = 53) |
---|---|---|---|
Female (n, %) | 15, 54% | 15, 63% | 30, 58% |
White (n, %) | 21, 75% | 23, 96% | 44, 85% |
Age (years) | 75 ± 6 | 74 ± 6 | 75 ± 6 |
Gait Speed (m/s) | 0.98 ± 0.13 | 1.10 ± 0.28 | 1.03 ± 0.22 |
Alphabet Performance (correct letters/s) | 0.63 ± 0.22 | 0.58 ± 0.11 | 0.61 ± 0.18 |
PRE | COG | POST | ||
---|---|---|---|---|
Feature | Direction | Mean ± STD | Mean ± STD | Mean ± STD |
RMS (G) | ML | 0.011 ± 0.007 | 0.011 ± 0.005 | 0.009 ± 0.006 |
V | 0.003 ± 0.003 | 0.004 ± 0.003 | 0.003 ± 0.003 | |
AP | 0.029 ± 0.021 | 0.028 ± 0.011 | 0.027 ± 0.015 | |
NPL (G/s) | ML | 0.023 ± 0.018 | 0.023 ± 0.011 | 0.019 ± 0.015 |
V | 0.011 ± 0.075 | 0.018 ± 0.021 | 0.013 ± 0.023 | |
AP | 0.031 ± 0.017 | 0.038 ± 0.018 | 0.031 ± 0.019 | |
CFR (Hz) | ML | 0.47 ± 0.15 | 0.45 ± 0.17 | 0.52 ± 0.25 |
V | 1.10 ± 0.31 | 1.06 ± 0.28 | 1.13 ± 0.34 | |
AP * | 0.29 ± 0.08 | 0.25 ± 0.07 | 0.29 ± 0.09 | |
PFR (Hz) | ML † | 0.19 ± 0.11 | 0.17 ± 0.13 | 0.26 ± 0.26 |
V | 0.64 ± 0.41 | 0.81 ± 0.50 | 0.62 ± 0.47 | |
AP * | 0.14 ± 0.06 | 0.08 ± 0.05 | 0.14 ± 0.09 | |
BND (Hz) | ML * | 0.92 ± 0.32 | 0.74 ± 0.26 | 0.95 ± 0.43 |
V * | 1.63 ± 0.73 | 1.00 ± 0.44 | 1.70 ± 0.66 | |
AP * | 0.82 ± 0.27 | 0.69 ± 0.27 | 0.87 ± 0.34 | |
ENTR | ML * | 0.88 ± 0.015 | 0.90 ± 0.020 | 0.88 ± 0.009 |
V | 0.86 ± 0.030 | 0.86 ± 0.031 | 0.86 ± 0.030 | |
AP * | 0.89 ± 0.009 | 0.91 ± 0.008 | 0.89 ± 0.010 | |
WE | ML * | 0.40 ± 0.23 | 0.57 ± 0.38 | 0.44 ± 0.26 |
V | 0.67 ± 0.32 | 0.77 ± 0.33 | 0.66 ± 0.38 | |
AP ‡ | 0.30 ± 0.18 | 0.37 ± 0.26 | 0.26 ± 0.17 | |
SI | ML-V | 0.86 ± 0.06 | 0.88 ± 0.06 | 0.86 ± 0.07 |
ML-AP | 0.87 ± 0.05 | 0.85 ± 0.05 | 0.87 ± 0.05 | |
AP-V | 0.87 ± 0.06 | 0.88 ± 0.06 | 0.87 ± 0.07 | |
CORR | ML-V | 0.35 ± 0.08 | 0.32 ± 0.13 | 0.36 ± 0.09 |
ML-AP * | 0.42 ± 0.07 | 0.39 ± 0.09 | 0.45 ± 0.11 | |
AP-V * | 0.37 ± 0.15 | 0.31 ± 0.11 | 0.37 ± 0.15 | |
SKEW | ML | 0.11 ± 0.69 | −0.04 ± 1.07 | −0.02 ± 0.97 |
V | −0.63 ± 0.85 | −0.63 ± 1.20 | −0.60 ± 0.91 | |
AP | −0.06 ± 0.51 | −0.04 ± 0.73 | 0.01 ± 0.50 | |
KURT | ML | 5.37 ± 2.74 | 7.36 ± 5.96 | 6.40 ± 6.20 |
V | 10.13 ± 6.30 | 9.57 ± 9.21 | 10.10 ± 6.60 | |
AP * | 3.33 ± 0.90 | 3.89 ± 1.31 | 3.28 ± 1.16 | |
LZ | ML | 0.32 ± 0.04 | 0.31 ± 0.05 | 0.32 ± 0.04 |
V * | 0.32 ± 0.06 | 0.35 ± 0.05 | 0.31 ± 0.06 | |
AP | 0.31 ± 0.04 | 0.30 ± 0.04 | 0.30 ± 0.05 |
Feature | ML | V | AP |
---|---|---|---|
RMS | - | - | - |
NPL | - | - | - |
CFR | - | - | ✓ |
PFR | ✕ | - | ✓ |
BND | ✓ | ✓ | ✓ |
ENTR | ✓ | - | ✓ |
WE | ✓ | - | △ |
SI | (ML-V)- | (AP-V)- | (ML-AP)- |
CORR | (ML-V)- | (AP-V)✓ | (ML-AP)✓ |
SKEW | - | - | - |
KURT | - | - | ✓ |
LZ | - | ✓ | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohlke, K.; Zhu, X.; Sparto, P.J.; Redfern, M.S.; Rosano, C.; Sejdic, E.; Rosso, A.L. The Effect of a Verbal Cognitive Task on Postural Sway Does Not Persist When the Task Is Over. Sensors 2021, 21, 8428. https://doi.org/10.3390/s21248428
Bohlke K, Zhu X, Sparto PJ, Redfern MS, Rosano C, Sejdic E, Rosso AL. The Effect of a Verbal Cognitive Task on Postural Sway Does Not Persist When the Task Is Over. Sensors. 2021; 21(24):8428. https://doi.org/10.3390/s21248428
Chicago/Turabian StyleBohlke, Kayla, Xiaonan Zhu, Patrick J. Sparto, Mark S. Redfern, Caterina Rosano, Ervin Sejdic, and Andrea L. Rosso. 2021. "The Effect of a Verbal Cognitive Task on Postural Sway Does Not Persist When the Task Is Over" Sensors 21, no. 24: 8428. https://doi.org/10.3390/s21248428
APA StyleBohlke, K., Zhu, X., Sparto, P. J., Redfern, M. S., Rosano, C., Sejdic, E., & Rosso, A. L. (2021). The Effect of a Verbal Cognitive Task on Postural Sway Does Not Persist When the Task Is Over. Sensors, 21(24), 8428. https://doi.org/10.3390/s21248428