Analysis of Energy Harvesting Enhancement in Piezoelectric Unimorph Cantilevers
Abstract
:1. Introduction
2. Electromechanical Model of the Piezoelectric Energy Scavenger
3. Problem Statement
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, J.; Kaur, R.; Singh, D. Energy harvesting in wireless sensor networks: A taxonomic survey. Int. J. Energy Res. 2021, 45, 118–140. [Google Scholar] [CrossRef]
- Eisapour, M.; Eisapour, A.H.; Hosseini, M.; Sardari, P.T. Exergy and energy analysis of wavy tubes photovoltaic-thermal systems using microencapsulated PCM nano-slurry coolant fluid. Appl. Energy 2020, 266, 114849. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, J.; Liao, W.H.; Liang, J. A Bidirectional Energy Conversion Circuit towards Multi-functional Piezoelectric Energy Harvesting and Vibration Excitation Purposes. IEEE Trans. Power Electron. 2021, 36, 12889–12897. [Google Scholar] [CrossRef]
- Mehrali, M.; Elshof, J.E.T.; Shahi, M.; Mahmoudi, A. Simultaneous solar-thermal energy harvesting and storage via shape stabilized salt hydrate phase change material. Chem. Eng. J. 2021, 405, 126624. [Google Scholar] [CrossRef]
- Asghari, H.; Dardel, M. Geometric and structural optimization of fluid energy harvester with high efficiency and bandwidth. Eur. J. Mech.-B/Fluids 2020, 79, 428–443. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, P.; Fan, Y.; Zeng, S.; Wang, Z.; Pan, Z.; He, Y.; Xiong, J.; Zhang, X.; Hu, Y.; et al. Ultrahigh piezoelectric coefficients of Li-doped (K, Na) NbO3 nanorod arrays with manipulated OT phase boundary: Towards energy harvesting and self-powered human movement monitoring. Nano Energy 2021, 86, 106072. [Google Scholar] [CrossRef]
- Paul, S.; Lee, D.; Kim, K.; Chang, J. Nonlinear modeling and performance testing of high-power electromagnetic energy harvesting system for self-powering transmission line vibration deicing robot. Mech. Syst. Signal Process. 2021, 151, 107369. [Google Scholar] [CrossRef]
- Sharma, M.; Chauhan, A.; Vaish, R. Energy harvesting using piezoelectric cementitious composites for water cleaning applications. Mater. Res. Bull. 2021, 137, 111205. [Google Scholar] [CrossRef]
- Mason, W.P. Piezoelectricity, its history and applications. J. Acoust. Soc. Am. 1981, 70, 1561–1566. [Google Scholar] [CrossRef]
- Yan, M.; Zhong, J.; Liu, S.; Xiao, Z.; Yuan, X.; Zhai, D.; Zhou, K.; Li, Z.; Zhang, D.; Bowen, C.; et al. Flexible pillar-base structured piezocomposite with aligned porosity for piezoelectric energy harvesting. Nano Energy 2021, 88, 106278. [Google Scholar] [CrossRef]
- Jalili, N. Piezoelectric-Based Vibration Control: From Macro to Micro/Nano Scale Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Bus. Horiz. 2015, 58, 431–440. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Deng, J.; Tian, X.; Gao, X. Development of a two-DOF inertial rotary motor using a piezoelectric actuator constructed on four bimorphs. Mech. Syst. Signal Process. 2021, 149, 107213. [Google Scholar] [CrossRef]
- Jamshidi, R.; Jafari, A. Conical shell vibration control with distributed piezoelectric sensor and actuator layer. Compos. Struct. 2021, 256, 113107. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, M.; Abolhasani, M.M.; Farhangi, M.; Barsari, V.Z.; Liu, H.; Dohler, M.; Naebe, M. Towards a green and self-powered internet of things using piezoelectric energy harvesting. IEEE Access 2019, 7, 94533–94556. [Google Scholar] [CrossRef]
- Rua Taborda, M.I.; Elissalde, C.; Chung, U.-C.; Maglione, M.; Fernandes, E.; Salehian, A.; Santawitee, O.; Debéda, H. Key features in the development of unimorph Stainless Steel cantilever with screen-printed PZT dedicated to energy harvesting applications. Int. J. Appl. Ceram. Technol. 2020, 17, 2533–2544. [Google Scholar] [CrossRef]
- Gupta, N.; Ray, A.; Naugarhiya, A.; Gupta, A. Design and Optimization of MEMS Piezoelectric Cantilever for Vibration Energy Harvesting Application. In Advances in VLSI, Communication, and Signal Processing; Springer: Singapore, 2020; pp. 655–662. [Google Scholar]
- Roundy, S.; Leland, E.S.; Baker, J.; Carleton, E.; Reilly, E.; Lai, E.; Otis, B.; Rabaey, J.; Wright, P.K.; Sundararajan, V. Improving power output for vibration-based energy scavengers. IEEE Pervasive Comput. 2005, 4, 28–36. [Google Scholar] [CrossRef]
- Lee, M.-S.; Kim, C.-I.; Park, W.-I.; Cho, J.-H.; Paik, J.-H.; Jeong, Y.H. Energy harvesting performance of unimorph piezoelectric cantilever generator using interdigitated electrode lead zirconate titanate laminate. Energy 2019, 179, 373–382. [Google Scholar] [CrossRef]
- Deng, J.; Guasch, O.; Zheng, L.; Song, T.; Cao, Y. Semi-analytical model of an acoustic black hole piezoelectric bimorph cantilever for energy harvesting. J. Sound Vib. 2021, 494, 115790. [Google Scholar] [CrossRef]
- Moon, K.; Choe, J.; Kim, H.; Ahn, D.; Jeong, J. A method of broadening the bandwidth by tuning the proof mass in a piezoelectric energy harvesting cantilever. Sens. Actuators A Phys. 2018, 276, 17–25. [Google Scholar] [CrossRef]
- Kim, M.; Hoegen, M.; Dugundji, J.; Wardle, B.L. Modeling and experimental verification of proof mass effects on vibration energy harvester performance. Smart Mater. Struct. 2010, 19, 045023. [Google Scholar] [CrossRef]
- Franco, V.; Varoto, P. Parameter uncertainties in the design and optimization of cantilever piezoelectric energy harvesters. Mech. Syst. Signal Process. 2017, 93, 593–609. [Google Scholar] [CrossRef]
- Yang, Z.; Zhou, S.; Zu, J.; Inman, D. High-performance piezoelectric energy harvesters and their applications. Joule 2018, 2, 642–697. [Google Scholar] [CrossRef] [Green Version]
- Mansour, M.O.; Arafa, M.H.; Megahed, S.M. Resonator with magnetically adjustable natural frequency for vibration energy harvesting. Sens. Actuators A Phys. 2010, 163, 297–303. [Google Scholar] [CrossRef]
- Shu, Y.-C.; Lien, I.C. Efficiency of energy conversion for a piezoelectric power harvesting system. J. Micromechan. Microeng. 2006, 16, 2429–2438. [Google Scholar] [CrossRef] [Green Version]
- Quattrocchi, A.; Montanini, R.; De Caro, S.; Panarello, S.; Scimone, T.; Foti, S.; Testa, A. A New Approach for Impedance Tracking of Piezoelectric Vibration Energy Harvesters Based on a Zeta Converter. Sensors 2020, 20, 5862. [Google Scholar] [CrossRef] [PubMed]
- Zou, D.; Liu, G.; Rao, Z.; Tan, T.; Zhang, W.; Liao, W.-H. Design of a multi-stable piezoelectric energy harvester with programmable equilibrium point configurations. Appl. Energy 2021, 302, 117585. [Google Scholar] [CrossRef]
- Muthalif, A.G.A.; Nordin, N.D. Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results. Mech. Syst. Signal Process. 2015, 54-55, 417–426. [Google Scholar] [CrossRef]
- Debnath, B.; Kumar, R.; Shakeel, P.M. Meandering-trapezoidal shaped MEMS structure for low frequency vibration based energy harvesting applications. Sustain. Energy Technol. Assess. 2020, 42, 100881. [Google Scholar] [CrossRef]
- Cao, Y.; Cao, D.; He, G.; Ge, X.; Hao, Y. Vibration analysis and distributed piezoelectric energy harvester design for the L-shaped beam. Eur. J. Mech.-A/Solids 2021, 87, 104214. [Google Scholar] [CrossRef]
- Alameh, A.H.; Gratuze, M.; Nabki, F. Impact of geometry on the performance of cantilever-based piezoelectric vibration energy harvesters. IEEE Sens. J. 2019, 19, 10316–10326. [Google Scholar] [CrossRef]
- Pradeesh, E.L.; Udhayakumar, S.; Sathishkumar, C. Investigation on various beam geometries for piezoelectric energy harvester with two serially mounted piezoelectric materials. SN Appl. Sci. 2019, 1, 1648. [Google Scholar] [CrossRef] [Green Version]
- Karadag, C.V.; Ertarla, S.; Topaloglu, N.; Okyar, F. Optimization of beam profiles for improved piezoelectric energy harvesting efficiency. Struct. Multidiscip. Optim. 2021, 63, 631–643. [Google Scholar] [CrossRef]
- Jin, L.; Gao, S.; Zhou, X.; Zhang, G. The effect of different shapes of cantilever beam in piezoelectric energy harvesters on their electrical output. Microsyst. Technol. 2017, 23, 4805–4814. [Google Scholar] [CrossRef]
- Pradeesh, E.; Udhayakumar, S. Effect of placement of piezoelectric material and proof mass on the performance of piezoelectric energy harvester. Mech. Syst. Signal Process. 2019, 130, 664–676. [Google Scholar] [CrossRef]
- Erturk, A.; Inman, D.J. A Distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J. Vib. Acoust. 2008, 130, 041002. [Google Scholar] [CrossRef]
- Erturk, A.; Inman, D.J. Piezoelectric Energy Harvesting; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
Parameter | Steel | PZT-5H | Proof Mass |
---|---|---|---|
Young’s Modulus (GPa) | 200 | 67 | 200 |
Density (kg/m3) | 7850 | 7800 | 7850 |
Length (mm) | 75 | 75 | 15 |
Width (mm) | 36 | 36 | 36 |
Thickness (mm) | 0.8 | 0.4 | 5 |
(pm/V) | ---- | −190 | ---- |
(nF/m) | ---- | 15.93 | ---- |
COMSOL | MATLAB | |
---|---|---|
1st natural frequency (Hz) | 47.82 | 47.81 |
2nd natural frequency (Hz) | 299.65 | 299.61 |
3rd natural frequency (Hz) | 838.81 | 838.90 |
Case | 1st Natural Frequency (Hz) | Output Voltage (V) |
---|---|---|
a | 137.9 | 2.2 |
b | 97.1 | 2.7 |
c | 80.5 | 3.3 |
d | 84.3 | 3.2 |
e | 86.6 | 3.0 |
Case | 1st Natural Frequency (Hz) | 2nd Natural Frequency (Hz) | 3rd Natural Frequency (Hz) | Output Voltage (V) |
---|---|---|---|---|
Without proof mass | 138 | 858.3 | 2406.4 | 2.25 |
With proof mass | 73 | 700 | 2058 | 4.35 |
1st Natural Frequency (Hz) | Output Voltage (V) | |
---|---|---|
12 | 106.2 | 2.32 |
24 | 90.7 | 2.81 |
36 | 80.5 | 3.29 |
48 | 73.1 | 3.76 |
1st Natural Frequency (Hz) | The Output Voltage (V) | ||
---|---|---|---|
12.5 | 62.5 | 90.9 | 3.43 |
25 | 50 | 82.4 | 3.5 |
37.5 | 37.5 | 80.5 | 3.29 |
50 | 25 | 83.4 | 2.85 |
62.5 | 12.5 | 94.3 | 2.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahimzadeh, M.; Samadi, H.; Mohammadi, N.S. Analysis of Energy Harvesting Enhancement in Piezoelectric Unimorph Cantilevers. Sensors 2021, 21, 8463. https://doi.org/10.3390/s21248463
Rahimzadeh M, Samadi H, Mohammadi NS. Analysis of Energy Harvesting Enhancement in Piezoelectric Unimorph Cantilevers. Sensors. 2021; 21(24):8463. https://doi.org/10.3390/s21248463
Chicago/Turabian StyleRahimzadeh, Mohammad, Hamid Samadi, and Nikta Shams Mohammadi. 2021. "Analysis of Energy Harvesting Enhancement in Piezoelectric Unimorph Cantilevers" Sensors 21, no. 24: 8463. https://doi.org/10.3390/s21248463
APA StyleRahimzadeh, M., Samadi, H., & Mohammadi, N. S. (2021). Analysis of Energy Harvesting Enhancement in Piezoelectric Unimorph Cantilevers. Sensors, 21(24), 8463. https://doi.org/10.3390/s21248463