An Optical Chiral Sensor Based on Weak Measurement for the Real-Time Monitoring of Sucrose Hydrolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Optical Rotation Detection Based on Weak Measurement in Frequency Domain
2.2. Sucrose Hydrolysis
2.3. Materials
3. Results and Discussion
3.1. Polarization Response of Weak Measurement System
3.2. Experiments for Optical Rotation Detection
3.3. Discussion of the Repeatability and Reliability in Real-Time Monitoring of Sucrose Hydrolysis
3.4. Real-Time Monitoring of Sucrose Hydrolysis under Different Catalytic Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Z.-M.; Dubremetz, J.-F.; Richard, V.; Yang, Q.; Xu, Z.-K.; Seta, P. Useful method for the spatial localization determination of enzyme (peroxidase) distribution on microfiltration membrane. J. Membr. Sci. 2005, 267, 2–7. [Google Scholar] [CrossRef]
- Kotwal, S.M.; Shankar, V. Immobilized invertase. Biotechnol. Adv. 2009, 27, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Pito, D.; Fonseca, I.M.; Ramos, A.M.; Vital, J.M.; Castanheiro, J. Hydrolysis of sucrose over composite catalysts. Chem. Eng. J. 2012, 184, 347–351. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Hoff, T.C.; Emdadi, L.; Wu, Y.; Bouraima, J.; Liu, D. Catalytic consequences of micropore topology, mesoporosity, and acidity on the hydrolysis of sucrose over zeolite catalysts. Catal. Sci. Technol. 2014, 4, 3064–3073. [Google Scholar] [CrossRef]
- Kehlbeck, J.D.; Slack, C.C.; Turnbull, M.T.; Kohler, S.J. Exploring the Hydrolysis of Sucrose by Invertase Using Nuclear Magnetic Resonance Spectroscopy: A Flexible Package of Kinetic Experiments. J. Chem. Educ. 2014, 91, 734–738. [Google Scholar] [CrossRef]
- Soyler, A.; Bouillaud, D.; Farjon, J.; Giraudeau, P.; Oztop, M. Real-time benchtop NMR spectroscopy for the online monitoring of sucrose hydrolysis. LWT 2020, 118, 108832. [Google Scholar] [CrossRef]
- Zajek, K.; Gorek, A. A kinetic study of sucrose hydrolysis over Amberlite IR-120 as a heterogeneous catalyst using in situ FTIR spectroscopy. React. Kinet. Mech. Catal. 2010, 100, 265–276. [Google Scholar] [CrossRef]
- Martínez, D.; Menéndez, C.; Echemendia, F.M.; Hernandez, L.; Sobrino, A.; Trujillo Toledo, L.E.; Rodríguez, I.; Rosendo Pérez Cruz, E. Kinetics of Sucrose Hydrolysis by Immobilized Recombinant Pichia pastoris Cells in a Batch reactors. J. Microb. Biochem. Technol. 2015, 7, 294–298. [Google Scholar]
- Tomotani, E.J.; Vitolo, M. Production of high-fructose syrup using immobilized invertase in a membrane reactor. J. Food Eng. 2007, 80, 662–667. [Google Scholar] [CrossRef]
- Kochergin, Y.S.; Noda, Y.; Kulkarni, R.; Škodáková, K.; Tarábek, J.; Schmidt, J.; Bojdys, M.J. Sulfur- and Nitrogen-Containing Porous Donor–Acceptor Polymers as Real-Time Optical and Chemical Sensors. Macromolecules 2019, 52, 7696–7703. [Google Scholar] [CrossRef]
- Wu, T.G.; Shen, J.; Li, Z.; Zou, T.; Xin, W.; Xing, F.; Zhang, F.; Man, Z.; Fu, S. Graphene-based ultrasensitive optical microfluidic sensor for the real-time and label-free monitoring of sim-ulated arterial blood flow. Opt. Express 2020, 28, 16594–16604. [Google Scholar] [CrossRef] [PubMed]
- Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef] [PubMed]
- Prabowo, B.; Purwidyantri, A.; Liu, K.-C. Surface Plasmon Resonance Optical Sensor: A Review on Light Source Technology. Biosensors 2018, 8, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, S.; Giri, P.; Prajapati, Y.K.; Chakrabarti, P. Effect of Surface Roughness on the Performance of Optical SPR Sensor for Sucrose Detection: Fabrication, Characterization, and Simulation Study. IEEE Sens. J. 2016, 16, 8865–8873. [Google Scholar] [CrossRef]
- Saini, R.; Kumar, A.; Bhatt, G.; Kapoor, A.; Paliwal, A.; Tomar, M.; Gupta, V. Lossy Mode Resonance-Based Refractive Index Sensor for Sucrose Concentration Measurement. IEEE Sens. J. 2020, 20, 1217–1222. [Google Scholar]
- Hosten, O.; Kwiat, P. Observation of the Spin Hall Effect of Light via Weak Measurements. Science 2008, 319, 787–790. [Google Scholar] [CrossRef] [Green Version]
- Ben Dixon, P.; Starling, D.J.; Jordan, A.N.; Howell, J.C. Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification. Phys. Rev. Lett. 2009, 102, 173601. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-F.; Xu, X.-Y.; Tang, J.-S.; Xu, J.-S.; Guo, G.-C. Ultrasensitive phase estimation with white light. Phys. Rev. A 2011, 83, 044102. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Shen, Z.; He, Y.; Zhang, Y.; Chen, Z.; Ma, H. Application of quantum weak measurement for glucose concentration detection. Appl. Opt. 2016, 55, 1697–1702. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; He, Y.; Shen, Z.; He, Q. Optical weak measurement system with common path implementation for label-free biomolecule sensing. Opt. Lett. 2016, 41, 5409–5412. [Google Scholar] [CrossRef]
- Luo, L.; Qiu, X.; Xie, L.; Liu, X.; Li, Z.; Zhi-You, Z.; Du, J. Precision improvement of surface plasmon resonance sensors based on weak-value amplification. Opt. Express 2017, 25, 21107–21114. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Guan, T.; He, Y.; He, Q.; Zhang, Y.; Wang, X.; Shen, Z.; Yang, Y.; Qiao, Z.; Ji, Y. A differential weak measurement system based on Sagnac interferometer for self-referencing biomolecule detection. J. Phys. D Appl. Phys. 2017, 50, 49LT01. [Google Scholar] [CrossRef]
- Li, D.M.; He, Q.; He, Y.; Xin, M.; Zhang, Y.; Shen, Z. Molecular imprinting sensor based on quantum weak measurement. Biosens. Bioelectr. 2017, 94, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, M.; Fischer, P. Weak value amplified optical activity measurements. Opt. Express 2011, 19, 16508–16517. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Xie, L.; Liu, X.; Luo, L.; Zhi-You, Z.; Du, J. Estimation of optical rotation of chiral molecules with weak measurements. Opt. Lett. 2016, 41, 4032–4035. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, J.; Zeng, K.; Chen, S.; Ling, X.; Shu, W.; Luo, H.; Wen, S. Ultrasensitive and real-time detection of chemical reaction rate based on the photonic spin Hall effect. APL Photon 2020, 5, 016105. [Google Scholar] [CrossRef]
- Li, D.M.; Guan, T.; Liu, F.; Yang, A.; He, Y.; He, Q.; Shen, Z.; Xin, M. Optical rotation based chirality detection of enantiomers via weak measurement in frequency domain. Appl. Phys. Lett. 2018, 112, 213701. [Google Scholar] [CrossRef]
- Li, D.; Guan, T.; He, Y.; Liu, F.; Yang, A.; He, Q.; Shen, Z.; Xin, M. A chiral sensor based on weak measurement for the determination of Proline enantiomers in diverse measuring circumstances. Biosens. Bioelectron. 2018, 110, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Riefke, B.; Licha, K.; Semmler, W. Contrast agents for optical mammography. Radiologe 1997, 37, 749–755. [Google Scholar] [CrossRef]
- Li, D.; He, Y.; Ruan, Y.; Lin, Q.; Li, K. Spectrum demodulating polarimeter based on weak measurement with a phase modulation. J. Phys. D Appl. Phys. 2019, 52, 475401. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Weng, C.; Ruan, Y.; Li, K.; Cai, G.; Song, C.; Lin, Q. An Optical Chiral Sensor Based on Weak Measurement for the Real-Time Monitoring of Sucrose Hydrolysis. Sensors 2021, 21, 1003. https://doi.org/10.3390/s21031003
Li D, Weng C, Ruan Y, Li K, Cai G, Song C, Lin Q. An Optical Chiral Sensor Based on Weak Measurement for the Real-Time Monitoring of Sucrose Hydrolysis. Sensors. 2021; 21(3):1003. https://doi.org/10.3390/s21031003
Chicago/Turabian StyleLi, Dongmei, Chaofan Weng, Yi Ruan, Kan Li, Guoan Cai, Chenyao Song, and Qiang Lin. 2021. "An Optical Chiral Sensor Based on Weak Measurement for the Real-Time Monitoring of Sucrose Hydrolysis" Sensors 21, no. 3: 1003. https://doi.org/10.3390/s21031003
APA StyleLi, D., Weng, C., Ruan, Y., Li, K., Cai, G., Song, C., & Lin, Q. (2021). An Optical Chiral Sensor Based on Weak Measurement for the Real-Time Monitoring of Sucrose Hydrolysis. Sensors, 21(3), 1003. https://doi.org/10.3390/s21031003