Analysis of the Quality of SLR Station Coordinates Determined from Laser Ranging to the LARES Satellite
Abstract
:1. Introduction
2. Determination of the SLR Station Coordinates
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ESA, eoPortal Directory. LARES. Available online: https://earth.esa.int/web/eoportal/satellite-missions/l/lares (accessed on 10 November 2020).
- Paolozzi, A.; Ciufolini, I.; Vendittozzi, C. Engineering and scientific aspects of LARES satellite. Acta Astronaut. 2011, 69, 127–134. [Google Scholar] [CrossRef]
- Paolozzi, A.; Ciufolini, I. LARES successfully launched in orbit: Satellite and mission description. Acta Astronaut. 2013, 91, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Ciufolini, I.; Paolozzi, A.; Pavlis, E.C.; Koenig, R.; Ries, J.; Gurzadyan, V.; Matzner, R.; Penrose, R.; Sindoni, G.; Pani, C.; et al. A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Measurement of Earths dragging of inertial frames. Eur. Phys. J. C 2016, 76, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pardini, C.; Anselmo, L.; Lucchesi, D.M.; Peron, R. On the secular decay of the LARES semi-major axis. Acta Astronaut. 2017, 140, 469–477. [Google Scholar] [CrossRef]
- Ciufolini, I.; Paolozzi, A.; Pavlis, E.C.; Sindoni, G.; Ries, J.; Matzner, R.; Koenig, R.; Paris, C.; Gurzadyan, V.; Penrose, R. An improved test of the general relativistic effect of frame-dragging using the LARES and LAGEOS satellites. Eur. Phys. J. C 2019, 79, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Gurzadyan, V.G.; Ciufolini, I.; Khachatryan, H.G.; Mirzoyan, S.; Paolozzi, A.; Sindoni, G. On the Earth’s tidal perturbations for the LARES satellite. Eur. Phys. J. Plus 2017, 132. [Google Scholar] [CrossRef] [Green Version]
- Pucacco, G.; Lucchesi, D.M. Tidal effects on the LAGEOS–LARES satellites and the LARASE program. Celest. Mech. Dyn. Astr. 2018, 130, 66. [Google Scholar] [CrossRef]
- Pavlis, E.C.; Paolozzi, A.; Paris, C.; Ciufolini, I.; Sindoni, G. Quality assessment of LARES satellite ranging data: LARES contribution for improving the terrestrial reference frame. In Proceedings of the 2nd IEEE International Workshop on Metrology for Aerospace, (MetroAeroSpace), Benevento, Italy, 4–5 June 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Sosnica, K.; Jäggi, A.; Thaller, D.; Beutler, G.; Dach, R. Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame. J. Geod. 2014, 88, 789–804. [Google Scholar] [CrossRef] [Green Version]
- Pearlman, M.R.; Degnan, J.J.; Bosworth, J.M. The international laser ranging service. Adv. Space Res. 2002, 30, 135–143. [Google Scholar] [CrossRef]
- Lejba, P.; Schillak, S. Determination of station positions and velocities from laser ranging observations to Ajisai, Starlette and Stella satellites. Adv. Space Res. 2011, 47, 654–662. [Google Scholar] [CrossRef]
- Pavlis, D.E.; Luo, S.; Dahiroc, P.; McCarthy, J.J.; Lutchke, S.B. GEODYN II System Description; Hughes STX Contractor Report; Hughes STX: Greenbelt, MA, USA, 1998. [Google Scholar]
- Torrence, M.H.; Klosko, S.M.; Christodoulidis, D.C. The construction and testing of normal point at goddard space flight center. In Proceedings of the 5th International Workshop on Laser Ranging Instrumentation, Herstmonceux, UK, 10–14 September 1984; Gaignebet, J., Ed.; Geodetic Institute, University of Bonn, 1985; Volume 2, pp. 506–516. Available online: https://ilrs.gsfc.nasa.gov/about/reports/workshop/lw05.html (accessed on 21 January 2021).
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. An earth gravitational model to degree; 2160:EGM2008. In Proceedings of the 2008 General Assembly of the European Geoscience Union, Vienna, Austria, 13–18 April 2008. [Google Scholar]
- IERS Conventions (2003); IERS Technical Note No. 32; McCarthy, D.D.; Petit, G. (Eds.) International Earth Rotation and Reference Systems Service; Bundesamt für Kartographie und Geodäsie: Frankfurt am Main, Germany, 2004. [Google Scholar]
- Ray, R.D. A Global Ocean Tide Model from TOPEX/POSEIDON Altimetry: GOT99.2; NASA/TMm1999–200478; Goddard Space Flight Center: Greenbelt, MD, USA, 1999; pp. 1–66. [Google Scholar]
- Standish, E.M.; Newhall, X.X.; Williams, J.G.; Folkner, W.F. JPL Planetary and Lunar Ephemerides DE403/LE403; JPL IOM; California Institute of Technology: Pasadena, CA, USA, 1995; Volume 31, pp. 10–127. [Google Scholar]
- IERS Conventions (2010); IERS Technical Note No. 36; Petit, G.; Luzum, B. (Eds.) International Earth Rotation and Reference Systems Service; Bundesamt für Kartographie und Geodäsie: Frankfurt am Main, Germany, 2010. [Google Scholar]
- Hedin, A.E. MSIS-86 thermospheric model. J. Geophys. Res. 1987, 92, 4649–4662. [Google Scholar] [CrossRef]
- Altamimi, Z.; Rebischung, P.; Metivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 2016, 121, 6109–6131. [Google Scholar] [CrossRef] [Green Version]
- ILRS. SLRF2014 Station Coordinates. 2017. Available online: ftp://ftp.cddis.eosdis.nasa.gov/pub/slr/products/resource/SLRF2014_POS+VEL_2030.0_170605.snx (accessed on 22 November 2019).
- Mendes, V.B.; Prates, G.; Pavlis, E.C.; Pavlis, D.E.; Langley, R.B. Improved mapping functions for atmospheric refraction in SLR. Geophys. Res. Lett. 2002, 29, 53-1–53-4. [Google Scholar] [CrossRef] [Green Version]
- Mendes, V.B.; Pavlis, E.C. High-accuracy zenith delay prediction at optical wavelengths. Geophys. Res. Lett. 2004, 31, L14602. [Google Scholar] [CrossRef] [Green Version]
- Otsubo, T.; Sherwood, R.A.; Appleby, G.M.; Neubert, R. Center-of-mass corrections for sub-cm-precision laser-ranging targets: Starlette, Stella and LARES. J. Geod. 2015, 89, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Sośnica, K. Determination of Precise Satellite Orbits and Geodetic Parameters Using Satellite Laser Ranging. Ph.D. Thesis, University of Bern, Bern, Switzerland, 7 April 2014. [Google Scholar]
- Borkowski, K.M. Accurate algorithms to transform geocentric to geodetic coordinates. Bull. Geod. 1989, 63, 50–56. [Google Scholar] [CrossRef]
- Alothman, A.O.; Schillak, S. Recent results for the Arabian plate motion using satellite laser ranging observations of Riyadh SLR station to LAGEOS-1 and LAGEOS-2 satellites. Arab. J. Sci. Eng. 2014, 39, 217–226. [Google Scholar] [CrossRef]
- Paolozzi, A.; Sindoni, G.; Felli, F.; Pilone, D.; Brotzu, A.; Ciufolini, I.; Pavlis, E.C.; Paris, C. Studies on the materials of LARES 2 satellite. J. Geod. 2019, 93, 2437–2446. [Google Scholar] [CrossRef]
Satellite | Altitude [km] | Diameter [cm] | Inclination [deg] | Density [g/cm3] | Launch Year |
---|---|---|---|---|---|
LAGEOS-1 | 5850 | 60 | 110 | 3.6 | 1976 |
LAGEOS-2 | 5625 | 60 | 53 | 3.6 | 1992 |
Etalon-1 | 19,105 | 129 | 65 | 1.3 | 1989 |
Etalon-2 | 19,135 | 129 | 65 | 1.3 | 1989 |
Ajisai | 1485 | 215 | 50 | 0.1 | 1986 |
Starlette | 812 | 24 | 49 | 6.6 | 1975 |
Stella | 804 | 24 | 99 | 6.6 | 1993 |
Larets | 691 | 24 | 98 | 3.2 | 2003 |
LARES | 1450 | 36 | 69 | 15.3 | 2012 |
Force Models |
Earth gravity field: EGM2008 100 × 100 [15] (20 × 20) |
Earth tides: IERS conventions 2003 [16] |
Earth tide model: EGM96 |
Ocean tide model: GOT99.2 [17] |
Third-body gravity: Moon, Sun, and planets: DE403 [18] |
Solar radiation pressure coefficient: CR = 1.07 (1.13) |
Tidal constants k2, k3, and phase k2: 0.3019, 0.093, 0.0 [19] |
Earth albedo [13] |
Dynamic polar motion [13] |
Relativistic corrections [13] |
Atmospheric density model: MSIS-86 [20] (not used) |
Constants |
Earth gravity parameter (GM): 3.986004415 × 1014 m3/s2 |
Speed of light: 299,792.458 km/s |
Semi-major axis of the Earth: 6378.13630 km |
Inverse of the Earth’s flattening: 298.25642 |
Reference Frame |
Inertial reference frame: J2000.0 Coordinate reference system: True of Date defined at 0.0 h of the first day of each arc |
Station coordinates and station velocities: SLRF2014 for epoch 2010.0 [21,22] |
Precession and nutation: IAU 2000 |
Polar motion: C04 IERS |
Tidal uplift: Love model H2 = 0.6078, L2 = 0.0847 [19] |
Pole tide [13] |
Estimated Parameters |
Satellite state vector (6 parameters) |
Station geocentric coordinates (3 parameters) |
Acceleration parameters along-track, cross-track, and radial (constant and once per revolution) (14 sets per weekly solution) (2 sets per week) |
Measurement Model |
Observations: 30-s normal points from EUROLAS Data Center (120-s) |
Laser pulse wavelength: 532 nm |
LARES center of mass correction: 13.1 cm (25.1 cm) |
LARES cross section area: 0.1041 m2 (0.2827 m2) |
Mass of LARES: 386.8 kg (LAGEOS-1: 406.965 kg, LAGEOS-2: 405.380 kg) |
Tropospheric refraction: Mendes–Pavlis model [23,24] |
Editing Criteria |
Residual of normal points >5σ |
Cut-off elevation <10 degrees |
Station coordinates: below 20 normal points per station and arc + >3D sigma of position determination + >3DRMS for each component North, East, Up |
Numerical Integration |
Integration: Cowell’s method |
Orbit integration step size: 30 s (120 s) |
Arc length: 1 week |
Station Number | SLR Station Name | Number of Weekly Arcs/Accepted Arcs | Number of Accepted Normal Points | Number of Normal Points Per arc | Date of First Arc | Date of Last Arc |
---|---|---|---|---|---|---|
Year-Month-Day | Year-Month-Day | |||||
1824 | Kiev (Ukraine) | 97/32 | 1218 | 38 | 120,321 | 151,223 |
1868 | Komsomolsk-na-Amure (Russia) | 63/17 | 476 | 28 | 120,509 | 151,223 |
1873 | Simeiz (Ukraine) | 94/49 | 2651 | 54 | 120,327 | 151,223 |
1874 | Mendeleevo (Russia) | 9/3 | 67 | 22 | 141,119 | 150,909 |
1879 | Altay (Russia) | 102/42 | 1676 | 40 | 120,425 | 151,209 |
1886 | Arkhyz (Russia) | 88/37 | 1219 | 33 | 120,912 | 151,223 |
1887 | Baikonur (Kazachstan) | 76/33 | 1771 | 54 | 120,502 | 150,902 |
1888 | Svetloe (Russia) | 102/66 | 4737 | 72 | 120,307 | 151,223 |
1889 | Zelenchukskya (Russia) | 77/27 | 976 | 36 | 120,404 | 151,223 |
1890 | Badary (Russia) | 135/74 | 4779 | 65 | 120,307 | 151,223 |
1891 | Irkutsk (Russia) | 10/6 | 190 | 32 | 150,715 | 151,223 |
1893 | Katzively (Ukraine) | 110/58 | 3218 | 55 | 120,307 | 150,916 |
7080 | McDonald (Texas-USA) | 118/35 | 1175 | 34 | 120,321 | 150,527 |
7090 | Yarragadee (Australia) | 183/171 | 51,084 | 299 | 120,307 | 151,223 |
7105 | Greenbelt (Maryland-USA) | 171/139 | 19,400 | 140 | 120,307 | 151,216 |
7110 | Monument Peak (California-USA) | 171/134 | 13,546 | 101 | 120,307 | 151,216 |
7119 | Haleakala (Hawaii-USA) | 153/93 | 5958 | 64 | 120,307 | 151,216 |
7124 | Tahiti (French Polinesia) | 107/46 | 2205 | 48 | 120,307 | 151,209 |
7237 | Changchun (China) | 180/142 | 16,171 | 114 | 120,307 | 151,223 |
7249 | Beijing (China) | 80/37 | 1772 | 48 | 120,314 | 150,513 |
7308 | Koganei (Japan) | 35/8 | 367 | 46 | 120,307 | 140,305 |
7358 | Tanegashima (Japan) | 3/1 | 16 | 16 | 120,321 | 120,411 |
7359 | Daedeok (Korea) | 40/14 | 593 | 42 | 130,828 | 141,112 |
7403 | Arequipa (Peru) | 153/78 | 4315 | 55 | 120,307 | 151,223 |
7405 | Concepcion (Chile) | 49/18 | 650 | 36 | 120,307 | 140,319 |
7406 | San Juan (Argentina) | 102/58 | 5118 | 88 | 120,307 | 141,029 |
7501 | Hartebeesthoek (South Africa) | 145/76 | 10,004 | 132 | 120,307 | 151,223 |
7810 | Zimmerwald (Switzerland) | 132/121 | 27,844 | 230 | 120,314 | 151,118 |
7820 | Kunming (China) | 30/17 | 609 | 36 | 130,102 | 140,521 |
7821 | Shanghai (China) | 124/48 | 1775 | 37 | 120,307 | 151,223 |
7824 | San Fernando (Spain) | 79/16 | 532 | 33 | 120,418 | 151,125 |
7825 | Mount Stromlo (Australia) | 182/142 | 14,799 | 104 | 120,307 | 151,223 |
7827 | Wettzell (Germany) | 3/2 | 228 | 114 | 151,118 | 151,209 |
7838 | Simosato (Japan) | 136/56 | 3409 | 61 | 120,328 | 151,223 |
7839 | Graz (Austria) | 169/141 | 24,257 | 172 | 120,307 | 151,223 |
7840 | Herstmonceux (UK) | 177/129 | 13,663 | 106 | 120,314 | 151,223 |
7841 | Potsdam (Germany) | 159/129 | 16,040 | 124 | 120,307 | 151,223 |
7845 | Grasse (France) | 73/31 | 1643 | 53 | 120,307 | 140,827 |
7941 | Matera (Italy) | 171/138 | 14,752 | 107 | 120,307 | 151,223 |
8834 | Wettzell (Germany) | 159/117 | 12,306 | 105 | 120,307 | 151,223 |
Station Number | SLR Station Name | 3DRMS Coordinates [mm] | Standard Deviation of The Station Coordinates Determination [mm] | Percent of Accepted Arcs% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
LA | L12 | LA + L12 | LA | L12 | LA + L12 | LA | L12 | LA + L12 | ||
Europe | ||||||||||
1888 | Svetloe (Russia) | 24.9 | 11.2 | 13.5 | 8.2 | 4.5 | 4.7 | 65 | 70 | 80 |
1893 | Katzively (Ukraine) | 21.8 | 15.4 | 18.3 | 7.3 | 6.7 | 5.6 | 53 | 54 | 72 |
7810 | Zimmerwald (Switzerland) | 9.5 | 5.2 | 5.2 | 3.4 | 1.9 | 1.7 | 92 | 92 | 92 |
7839 | Graz (Austria) | 12.7 | 7.7 | 6.9 | 4.1 | 3.6 | 2.7 | 83 | 89 | 87 |
7840 | Herstmonceux (UK) | 15.3 | 7.5 | 6.8 | 5.1 | 3.0 | 2.6 | 73 | 92 | 91 |
7841 | Potsdam (Germany) | 14.3 | 9.4 | 8.3 | 4.7 | 4.5 | 3.1 | 81 | 81 | 84 |
7941 | Matera (Italy) | 13.1 | 6.9 | 5.7 | 5.0 | 2.3 | 2.1 | 81 | 94 | 91 |
8834 | Wettzell (Germany) | 11.5 | 8.1 | 7.7 | 4.6 | 3.6 | 3.0 | 74 | 71 | 81 |
North America | ||||||||||
7105 | Greenbelt (Maryland-USA) | 26.0 | 7.7 | 8.0 | 6.5 | 2.6 | 2.5 | 81 | 89 | 90 |
7110 | Monument Peak (California-USA) | 31.2 | 10.9 | 10.3 | 7.7 | 3.2 | 2.9 | 78 | 93 | 92 |
Pacific | ||||||||||
7119 | Haleakala(Hawaii -USA) | 45.9 | 13.9 | 14.2 | 11.1 | 3.8 | 3.6 | 61 | 90 | 94 |
East Asia | ||||||||||
1890 | Badary (Russia) | 30.7 | 14.8 | 15.4 | 8.8 | 6.6 | 5.7 | 55 | 53 | 72 |
7237 | Changchun (China) | 26.8 | 11.1 | 11.0 | 6.3 | 3.3 | 2.9 | 79 | 87 | 89 |
7838 | Simosato (Japan) | 35.3 | 13.2 | 13.1 | 8.4 | 3.5 | 3.3 | 41 | 87 | 88 |
Australia | ||||||||||
7090 | Yarragadee (Australia) | 24.2 | 6.6 | 6.4 | 5.3 | 2.0 | 1.9 | 93 | 97 | 96 |
7825 | Mount Stromlo (Australia) | 23.0 | 7.4 | 7.3 | 6.4 | 2.8 | 2.6 | 78 | 92 | 93 |
Africa | ||||||||||
7501 | Hartebeesthoek (RPA) | 34.0 | 11.2 | 11.4 | 7.6 | 3.1 | 2.9 | 52 | 87 | 85 |
LAGEOS-1 | LAGEOS-2 | LARES | |||||||
---|---|---|---|---|---|---|---|---|---|
Station Number | Number of Normal Points | Range Bias and Long Term Stability [mm] | RMS [mm] | Number of Normal Points | Range Bias and Long Term Stability [mm] | RMS [mm] | Number of Normal Points | Range Bias and Long Term Stability [mm] | RMS [mm] |
1888 | 5477 | 1.0 ± 6.7 | 16.1 | 3299 | 0.7 ± 9.5 | 16.7 | 4737 | 0.4 ± 8.7 | 20.1 |
1890 | 2841 | 2.8 ± 8.4 | 17.9 | 1461 | −1.4 ± 12.1 | 20.7 | 4779 | −1.2 ± 5.7 | 19.4 |
1893 | 1974 | −0.9 ± 12.0 | 25.3 | 2071 | −0.8 ± 12.3 | 26.3 | 3218 | −11.1 ± 8.0 | 26.4 |
7090 | 43,479 | 0.2 ± 2.5 | 13.2 | 44,535 | −0.2 ± 2.4 | 12.5 | 51,084 | 1.5 ± 1.8 | 13.8 |
7105 | 17,244 | −1.0 ± 4.5 | 13.1 | 15,658 | −0.4 ± 5.4 | 13.7 | 19,400 | 1.2 ± 2.8 | 14.2 |
7110 | 14,338 | 1.7 ± 7.6 | 17.7 | 12,596 | 5.6 ± 8.4 | 17.1 | 13,546 | 3.5 ± 4.0 | 14.7 |
7119 | 8703 | 2.1 ± 9.1 | 16.9 | 9856 | 2.9 ± 10.0 | 17.2 | 5958 | 1.7 ± 5.0 | 16.2 |
7237 | 12,404 | 1.2 ± 8.3 | 20.2 | 9567 | 0.4 ± 10.5 | 20.2 | 16,171 | 1.7 ± 3.7 | 18.5 |
7501 | 15,533 | 0.5 ± 7.7 | 15.4 | 14,417 | 2.7 ± 7.0 | 15.1 | 10,004 | 2.3 ± 3.2 | 15.2 |
7810 | 28,923 | −0.1 ± 3.1 | 13.0 | 22,073 | −0.6 ± 3.9 | 13.5 | 27,844 | 2.9 ± 2.6 | 14.1 |
7825 | 19,727 | −1.9 ± 4.1 | 14.2 | 19,133 | −1.6 ± 4.2 | 14.3 | 14,799 | −2.0 ± 3.8 | 16.5 |
7838 | 10,129 | 1.2 ± 11.5 | 22.1 | 11,436 | 1.8 ± 9.2 | 22.1 | 3409 | 0.5 ± 6.0 | 18.8 |
7839 | 10,103 | −0.5 ± 4.2 | 12.0 | 7612 | −1.7 ± 5.1 | 12.7 | 24,257 | 3.0 ± 2.6 | 13.9 |
7840 | 15,554 | 4.2 ± 3.4 | 13.4 | 11,399 | 4.2 ± 4.4 | 13.7 | 13,663 | 1.1 ± 3.6 | 13.3 |
7841 | 7633 | −0.5 ± 6.7 | 12.3 | 5332 | −1.2 ± 7.0 | 12.3 | 16,040 | 0.3 ± 3.7 | 13.9 |
7941 | 23,552 | −2.0 ± 4.7 | 12.7 | 22,418 | −2.3 ± 4.3 | 13.0 | 14,752 | 0.2 ± 3.8 | 12.3 |
8834 | 8960 | −9.6 ± 5.4 | 15.9 | 6621 | −9.2 ± 6.9 | 15.6 | 12,306 | −9.2 ± 5.8 | 17.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schillak, S.; Lejba, P.; Michałek, P. Analysis of the Quality of SLR Station Coordinates Determined from Laser Ranging to the LARES Satellite. Sensors 2021, 21, 737. https://doi.org/10.3390/s21030737
Schillak S, Lejba P, Michałek P. Analysis of the Quality of SLR Station Coordinates Determined from Laser Ranging to the LARES Satellite. Sensors. 2021; 21(3):737. https://doi.org/10.3390/s21030737
Chicago/Turabian StyleSchillak, Stanisław, Paweł Lejba, and Piotr Michałek. 2021. "Analysis of the Quality of SLR Station Coordinates Determined from Laser Ranging to the LARES Satellite" Sensors 21, no. 3: 737. https://doi.org/10.3390/s21030737
APA StyleSchillak, S., Lejba, P., & Michałek, P. (2021). Analysis of the Quality of SLR Station Coordinates Determined from Laser Ranging to the LARES Satellite. Sensors, 21(3), 737. https://doi.org/10.3390/s21030737