Influence of Artefact Correction and Recording Device Type on the Practical Application of a Non-Linear Heart Rate Variability Biomarker for Aerobic Threshold Determination
Abstract
:1. Introduction
- Investigate the degree of bias in the DFA a1 index caused by the presence of missed beat artefact by the automatic and threshold correction modalities of Kubios (Version 3.4.1). Since research groups and consumers will use this popular HRV software program but only the threshold method is available in the free version, both artefact correction methods will be examined.
- Compare DFA a1 data gathered from a research grade ECG to that obtained from a Polar H7 recording device. Although a direct comparison of artefact free tracings from both a chest belt and ECG are easily accomplished for subjects at rest, it is generally impractical to expect artefact free chest belt recording during high intensity exercise [11]. In lieu of this limitation, we will not attempt to systematically compare artefact free segments of Polar H7 vs. ECG data. Instead, a realistic use case comparison will be done such as evaluation of the HRVT heart rate between the devices when worn simultaneously.
2. Methods
2.1. Participants
2.2. Exercise Protocol
2.3. Gas Exchange Testing and Calculation of the First Ventilatory Threshold
2.4. RR Measurements and Calculation of DFA a1 Derived Threshold
2.5. Artefact Addition to ECG and Influence on DFA a1
2.6. Influence of Artefact on ECG Derived HRVT
2.7. Influence of Polar H7 on HRVT
2.8. Statistics
3. Results
3.1. Gas Exchange
3.2. Artefact Addition to ECG Recording and Influence on DFA a1with 1, 3 and 6% Artefact
3.3. Influence of Artefact Condition and Correction Method on the ECG Derived HRVT
3.4. HRVT Derived from ECG vs. HRVT Derived from Polar H7
4. Discussion
5. Limitations and Future Directions
6. Conclusions and Practical Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hottenrott, K.; Hoos, O. Heart rate variability analysis in exercise physiology. In ECG Time Series Analysis: Engineering to Medicine; Jelinek, H., Khandoker, A., Cornforth, D., Eds.; CRC Press: London, UK, 2017; pp. 245–257. [Google Scholar]
- Michael, S.; Graham, K.S.; Davis, G.M.O. Cardiac Autonomic Responses during Exercise and Post-exercise Recovery Using Heart Rate Variability and Systolic Time Intervals—A Review. Front. Physiol. 2017, 8, 301. [Google Scholar] [CrossRef] [Green Version]
- Gronwald, T.; Hoos, O. Correlation properties of heart rate variability during endurance exercise: A systematic review. Ann. Noninvasive Electrocardiol. 2020, 25, e12697. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995, 5, 82–87. [Google Scholar] [CrossRef]
- Gronwald, T.; Hoos, O.; Ludyga, S.; Hottenrott, K. Non-linear dynamics of heart rate variability during incremental cycling exercise. Res. Sports Med. 2019, 27, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Gronwald, T.; Rogers, B.; Hoos, O. Fractal Correlation Properties of Heart Rate Variability: A New Biomarker for Intensity Distribution in Endurance Exercise and Training Prescription? Front. Physiol. 2020, 11, 1152. [Google Scholar] [CrossRef] [PubMed]
- Rogers, B.; Giles, D.; Draper, N.; Hoos, O.; Gronwald, T. A new detection method defining the aerobic threshold for endurance exercise and training prescription based on fractal correlation properties of heart rate variability. Front. Physiol. 2020. [Google Scholar] [CrossRef]
- Pasadyn, S.R.; Soudan, M.; Gillinov, M.; Houghtaling, P.; Phelan, D.; Gillinov, N.; Bittel, B.; Desai, M.Y. Accuracy of commercially available heart rate monitors in athletes: A prospective study. Cardiovasc. Diagn. Ther. 2019, 9, 379–385. [Google Scholar] [CrossRef]
- Kingsley, M.; Lewis, M.J.; Marson, R.E. Comparison of Polar 810 s and an Ambulatory ECG System for RR Interval Measurement during Progressive Exercise. Int. J. Sports Med. 2005, 26, 39–44. [Google Scholar] [CrossRef]
- Porto, L.G.; Junqueira, L.F., Jr. Comparison of time-domain short-term heart interval variability analysis using a wrist-worn heart rate monitor and the conventional electrocardiogram. Pacing Clin. Electrophysiol. 2009, 32, 43–51. [Google Scholar] [CrossRef]
- Giles, D.A.; Draper, N. Heart Rate Variability during Exercise: A Comparison of Artefact Correction Methods. J. Strength Cond. Res. 2018, 32, 726–735. [Google Scholar] [CrossRef]
- Plews, D.J.; Scott, B.; Altini, M.; Wood, M.; Kilding, A.E.; Laursen, P.B. Comparison of Heart-Rate-Variability Recording with Smartphone Photoplethysmography, Polar H7 Chest Strap, and Electrocardiography. Int. J. Sports Physiol. Perform. 2017, 12, 1324–1328. [Google Scholar] [CrossRef] [PubMed]
- Cassirame, J.; Vanhaesebrouck, R.; Chevrolat, S.; Mourot, L. Accuracy of the Garmin 920 XT HRM to perform HRV analysis. Australas Phys. Eng. Sci. Med. 2017, 40, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Caminal, P.; Sola, F.; Gomis, P.; Guasch, E.; Perera-Lluna, A.; Soriano, N.; Mont, L. Validity of the Polar V800 monitor for measuring heart rate variability in mountain running route conditions. Eur. J. Appl. Physiol. 2018, 118, 669–677. [Google Scholar] [CrossRef] [Green Version]
- Gilgen-Ammann, R.; Schweizer, T.; Wyss, T. RR interval signal quality of a heart rate monitor and an ECG Holter at rest and during exercise. Eur. J. Appl. Physiol. 2019, 119, 1525–1532. [Google Scholar] [CrossRef]
- Peltola, M.A. Role of editing of R–R intervals in the analysis of heart rate variability. Front. Physiol. 2012, 3, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berntson, G.G.; Stowell, J.R. ECG artefacts and heart period variability: Don’t miss a beat! Psychophysiology 1998, 35, 127–132. [Google Scholar] [CrossRef]
- Buchheit, M. Monitoring training status with HR measures: Do all roads lead to Rome? Front. Physiol. 2014, 5, 73. [Google Scholar] [CrossRef] [Green Version]
- Peltola, M.A.; Seppänen, T.; Mäkikallio, T.H.; Huikuri, H.V. Effects and Significance of Premature Beats on Fractal Correlation Properties of R-R Interval Dynamics. Ann. Noninvasive Electrocardiol. 2004, 9, 127–135. [Google Scholar] [CrossRef]
- Stapelberg, N.J.C.; Neumann, D.L.; Shum, D.H.K.; McConnell, H.; Hamilton-Craig, I. The sensitivity of 38 heart rate variability measures to the addition of artefact in human and artificial 24-hr cardiac recordings. Ann. Noninvasive Electrocardiol. 2018, 23, e12483. [Google Scholar] [CrossRef] [Green Version]
- Rincon Soler, A.I.; Silva, L.E.V.; Fazan, R., Jr.; Murta, L.O., Jr. The impact of artefact correction methods of RR series on heart rate variability parameters. J. Appl. Physiol. 2018, 124, 646–652. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Niskanen, J.-P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV—Heart rate variability analysis software. Comput. Methods Progr. Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Lipponen, J.A.; Tarvainen, M.P. A robust algorithm for heart rate variability time series artefact correction using novel beat classification. J. Med. Eng. Technol. 2019, 43, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, G.D.S.; Neves, V.R.; Deresz, L.F.; Melo, R.D.; Lago, P.D.; Karsten, M. Can RR intervals editing and selection techniques interfere with the analysis of heart rate variability? Braz. J. Phys. Ther. 2018, 22, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Hautala, A.J.; Mäkikallio, T.H.; Seppänen, T.; Huikuri, H.V.; Tulppo, M.P. Short-term correlation properties of R-R interval dynamics at different exercise intensity levels. Clin. Physiol. Funct. Imaging 2003, 23, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Casties, J.-F.; Mottet, D.; Le Gallais, D. Non-Linear Analyses of Heart Rate Variability during Heavy Exercise and Recovery in Cyclists. Int. J. Sports Med. 2006, 27, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Gronwald, T.; Hoos, O.; Hottenrott, K. Effects of Acute Normobaric Hypoxia on Non-linear Dynamics of Cardiac Autonomic Activity during Constant Workload Cycling Exercise. Front. Physiol. 2019, 10, 999. [Google Scholar] [CrossRef] [Green Version]
- Gronwald, T.; Hoos, O.; Hottenrott, K. Effects of a Short-Term Cycling Interval Session and Active Recovery on Non-Linear Dynamics of Cardiac Autonomic Activity in Endurance Trained Cyclists. J. Clin. Med. 2019, 8, 194. [Google Scholar] [CrossRef] [Green Version]
- Gronwald, T.; Ludyga, S.; Hoos, O.; Hottenrott, K. Non-linear dynamics of cardiac autonomic activity during cycling exercise with varied cadence. Hum. Mov. Sci. 2018, 60, 225–233. [Google Scholar] [CrossRef]
- Gaskill, S.E.; Ruby, B.C.; Walker, A.J.; Sanchez, O.A.; Serfass, R.C.; Leon, A.S. Validity and reliability of combining three methods to determine ventilatory threshold. Med. Sci. Sports Exerc. 2001, 33, 1841–1848. [Google Scholar] [CrossRef]
- Alcantara, J.M.; Plaza-Florido, A.; Amaro-Gahete, F.J.; Acosta, F.M.; Migueles, J.H.; Molina-Garcia, P.; Sacha, J.; Sanchez-Delgado, G.; Martinez-Tellez, B. Impact of Using Different Levels of Threshold-Based Artefact Correction on the Quantification of Heart Rate Variability in Three Independent Human Cohorts. J. Clin. Med. 2020, 9, 325. [Google Scholar] [CrossRef] [Green Version]
- Bland, J.M.; Altman, D.G. Measuring agreement in method comparison studies. Stat. Methods Med. Res. 1999, 8, 135–160. [Google Scholar] [CrossRef]
- Chan, Y.H. Biostatistics 104: Correlational analysis. Singap. Med. J. 2003, 44, 614–619. [Google Scholar]
- Zimmerman, D.W. A Note on the Influence of Outliers on Parametric and Nonparametric Tests. J. Gen. Psychol. 1994, 121, 391–401. [Google Scholar] [CrossRef]
- Jiang, X.; Guo, X.; Zhang, N.; Wang, B.; Zhang, B. Robust multivariate nonparametric tests for detection of two-sample location shift in clinical trials. PLoS ONE 2018, 13, e0195894. [Google Scholar] [CrossRef] [PubMed]
- Ludbrook, J. Confidence in Altman-Bland plots: A critical review of the method of differences. Clin. Exp. Pharmacol. Physiol. 2010, 37, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Gerke, O. Reporting Standards for a Bland–Altman Agreement Analysis: A Review of Methodological Reviews. Diagnostics 2020, 10, 334. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences; Erlbaum: Hillsdale, MI, USA, 1988. [Google Scholar]
- Lippman, N.; Stein, K.M.; Lerman, B.B. Nonlinear forecasting and the dynamics of cardiac rhythm. J. Electrocardiol. 1995, 28, 65–70. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, 32, 230–236. [Google Scholar] [CrossRef]
- Apandi, Z.F.M.; Ikeura, R.; Hayakawa, S.; Tsutsumi, S. An Analysis of the Effects of Noisy Electrocardiogram Signal on Heartbeat Detection Performance. Bioengineering 2020, 7, 53. [Google Scholar] [CrossRef]
- Cassirame, J.; Chevrolat, S.; Mourot, L. Effects of R-R time series accuracy on heart rate variability indexes. Mov. Sport Sci. 2019, 106, 27–35. [Google Scholar] [CrossRef] [Green Version]
- Tapanainen, J.M.; Seppänen, T.; Laukkanen, R.; Loimaala, A.; Huikuri, H.V. Significance of the Accuracy of RR Interval Detection for the Analysis of New Dynamic Measures of Heart Rate Variability. Ann. Noninvasive Electrocardiol. 1999, 4, 10–17. [Google Scholar] [CrossRef]
- Hartikainen, S.; Lipponen, J.A.; Hiltunen, P.; Rissanen, T.T.; Kolk, I.; Tarvainen, M.P.; Martikainen, T.J.; Castren, M.; Väliaho, E.-S.; Jäntti, H. Effectiveness of the Chest Strap Electrocardiogram to Detect Atrial Fibrillation. Am. J. Cardiol. 2019, 123, 1643–1648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
DFA a1 NA | DFA a1 1% AC | DFA a1 1% MC | DFA a1 3% AC | DFA a1 3% MC | DFA a1 6% AC | DFA a1 6% MC | |
---|---|---|---|---|---|---|---|
Mean (±SD) | 0.9518 (±0.404) | 0.9512 (±0.4027) | 0.9505 (±0.39) | 0.9579 (±0.3993) | 0.9569 (±0.3926) | 0.9712 (±0.3953) | 0.9677 (±0.3675) |
Median | 1.0251 | 1.0267 | 1.03385 | 1.0315 | 1.01605 | 1.014 | 1.02955 |
Maximum | 1.5995 | 1.5986 | 1.6567 | 1.6039 | 1.6566 | 1.6041 | 1.633 |
Minimum | 0.2171 | 0.2212 | 0.2402 | 0.2281 | 0.291 | 0.2208 | 0.3202 |
AMD (vs. NA) | 0.0012 (p = 0.002) | 0 (p = 0.999) | 0.0048 (p = 0.0001) | 0.0111 (p = 0.15) | 0.0146 (p = 0.0001) | 0.0223 (p = 0.01) | |
R2 (vs. NA) | 0.999 | 0.977 | 0.997 | 0.960 | 0.983 | 0.962 | |
Pearson’s r (vs. NA) | 0.999 | 0.989 | 0.998 | 0.980 | 0.991 | 0.981 | |
SEE | 0.013 | 0.059 | 0.023 | 0.079 | 0.052 | 0.072 |
HRVT NA | HRVT 1% AC | HRVT 1% MC | HRVT 3% AC | HRVT 3% MC | HRVT 6% AC | HRVT 6% MC | |
---|---|---|---|---|---|---|---|
155.2 | 155.3 | 156.1 | 156.6 | 155.9 | 159.8 | 156.3 | |
185.2 | 185.4 | 185.7 | 185.9 | 184.6 | 186.0 | 184.7 | |
125.9 | 126.3 | 125.7 | 125.9 | 125.3 | 126.5 | 124.3 | |
137.5 | 137.9 | 137.9 | 137.7 | 137.6 | 138.3 | 137.9 | |
137.4 | 137.5 | 138.1 | 137.5 | 138.3 | 137.5 | 138.7 | |
162.6 | 163.0 | 163.0 | 163.2 | 164.2 | 163.3 | 165.0 | |
175.4 | 175.0 | 176.3 | 175.8 | 176.7 | 175.7 | 179.0 | |
133.8 | 134.7 | 133.3 | 135.6 | 134.3 | 138.2 | 137.6 | |
170.6 | 170.2 | 170.5 | 170.4 | 169.7 | 171.1 | 171.2 | |
174.6 | 174.0 | 174.7 | 173.9 | 175.0 | 174.3 | 175.0 | |
Mean (±SD) | 155.8 bpm (±20.9) | 155.9 bpm (±20.6) | 156.1 bpm (±21.0) | 156.3 bpm (±20.7) | 156.2 bpm (±20.9) | 157.1 bpm * (±20.4) | 157.0 bpm (±21.0) |
HRVT ECG AC | HRVT Polar H7 AC | |
---|---|---|
155.2 | 152.3 | |
185.2 | 182.9 | |
125.9 | 124.6 | |
137.5 | 135.1 | |
160.0 | 156.4 | |
137.4 | 137.5 | |
162.6 | 154.6 | |
160.3 | 157.1 | |
171.0 | 166.0 | |
175.4 | 164.0 | |
133.8 | 129.0 | |
Mean (±SD) | 154.9 bpm (±19.0) | 150.9 bpm * (±17.6) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rogers, B.; Giles, D.; Draper, N.; Mourot, L.; Gronwald, T. Influence of Artefact Correction and Recording Device Type on the Practical Application of a Non-Linear Heart Rate Variability Biomarker for Aerobic Threshold Determination. Sensors 2021, 21, 821. https://doi.org/10.3390/s21030821
Rogers B, Giles D, Draper N, Mourot L, Gronwald T. Influence of Artefact Correction and Recording Device Type on the Practical Application of a Non-Linear Heart Rate Variability Biomarker for Aerobic Threshold Determination. Sensors. 2021; 21(3):821. https://doi.org/10.3390/s21030821
Chicago/Turabian StyleRogers, Bruce, David Giles, Nick Draper, Laurent Mourot, and Thomas Gronwald. 2021. "Influence of Artefact Correction and Recording Device Type on the Practical Application of a Non-Linear Heart Rate Variability Biomarker for Aerobic Threshold Determination" Sensors 21, no. 3: 821. https://doi.org/10.3390/s21030821
APA StyleRogers, B., Giles, D., Draper, N., Mourot, L., & Gronwald, T. (2021). Influence of Artefact Correction and Recording Device Type on the Practical Application of a Non-Linear Heart Rate Variability Biomarker for Aerobic Threshold Determination. Sensors, 21(3), 821. https://doi.org/10.3390/s21030821