Rapid Fluorescence Quenching Detection of Escherichia coli Using Natural Silica-Based Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Preparation of Fluorescent Silica Nanoparticles
2.3. Characterization of Fluorescent Silica Nanoparticles
2.4. Fluorescence Spectrophotometer Measurements
2.5. E. coli Sensing Experiments Using SNP-RB
2.5.1. Preparation of E. coli Bacterial Culture
2.5.2. Detection of E. coli Using SNP-RB
2.5.3. Response Time Measurements
2.5.4. Sensitivity Measurements of SNP-RB for E. coli Detection
2.5.5. Selectivity Measurements of SNP-RB for E. coli Detection
3. Results and Discussion
3.1. Characterization and Fluorescence Emission of SNP-RB
3.2. Analytical Performance of SNP-RB for the Fluorescence-Based Detection of E. coli
3.2.1. Detection Mechanism
3.2.2. Analytical Performance of SNP-RB as an E. coli Biosensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desselberger, U. Emerging and Re-emerging Infectious Diseases. J. Infect. 2000, 40, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Jones, N.; Ray, B.; Ranjit, K.T.; Manna, A.C. Antibacterial Activity of ZnO Nanoparticle Suspensions on a Board Spectrum of Microorganisms. FEMS Microbiol. Lett. 2008, 279, 71–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, S.M.; Lee, S.Y. Optical Biosensors for the Detection of Pathogenic Microorganisms. Trends Biotechnol. 2016, 34, 7–25. [Google Scholar] [CrossRef] [PubMed]
- Manafi, M.; Kneifel, W.; Bascomb, S. Fluorogenic and chromogenic substrates used in bacterial diagnostics. Microbiol. Rev. 1991, 55, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Kirla, H.; Hughes, L.; Henry, D.J. Carbohydrate coated fluorescent mesoporous silica particles for bacterial imaging. Colloids Surf. B Biointerfaces 2020, 188, 110751. [Google Scholar] [CrossRef]
- IUPAC. Compendium of Chemical Terminology (The “Gold Book”), 2nd ed.; McNaught, A.D., Wilkinson, A., Eds.; Blackwell Scientific Publications: Oxford, UK, 1997. [Google Scholar] [CrossRef]
- Fauchet, P.M. Porous Silicon Optical Label-Free Biosensors. In Device Applications of Silicon Nanocrystals and Nanostructures; Koshida, N., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 293–323. [Google Scholar]
- Morrison, D.W.G.; Dokmeci, M.; Demirci, U.; Khademhosseini, A. Clinical Applications of Micro- and Nanoscale Biosensors. In Biomedical Nanostructures; Gonsalves, K.E., Laurencin, C.L., Halberstadt, C.R., Nair, L.S., Eds.; John Wiley & Sons, Inc.: Toronto, ON, Canada, 2008. [Google Scholar]
- Perumal, V.; Hashim, U. Advances in biosensors: Principle, architecture and applications. J. Appl. Biomed. 2014, 12, 1–15. [Google Scholar] [CrossRef]
- Vikesland, P.J.; Wigginton, K.R. Nanomaterial Enabled Biosensors for Pathogen Monitoring—A Review. Environ. Sci. Technol. 2010, 44, 3656–3669. [Google Scholar] [CrossRef]
- Verma, M.S.; Rogowski, J.I.; Jones, L.; Gu, F.X. Colorimetric Biosensing of Pathogens using Gold Nanoparticles. Biotechnol. Adv. 2015, 33, 666–680. [Google Scholar] [CrossRef]
- Sanvicens, N.; Pastells, C.; Pascual, N.; Marco, M.-P. Nanoparticle-based Biosensor for Detection of Pathogenic Bacteria. TRAC Trends Anal. Chem. 2009, 28, 1243–1252. [Google Scholar] [CrossRef]
- Jokerst, J.C.; Adkins, J.A.; Bisha, B.; Mentele, M.M.; Goodridge, L.D.; Henry, C.S. Development of a Paper-Based Analytical Device for Colorimetric Detection of Select Foodborne Pathogens. Anal. Chem. 2012, 84, 2900–2907. [Google Scholar] [CrossRef]
- dos Santos, M.B.; Agusil, J.P.; Prieto-Simón, B.; Sporer, C.; Teixeira, V.; Samitier, J. Highly sensitive detection of pathogen Escherichia coli O157:H7 by electrochemical impedance spectroscopy. Biosens. Bioelectron. 2013, 45, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Jenie, S.A.; Plush, S.E.; Voelcker, N.H. Recent Advances on Luminescent Enhancement-Based Porous Silicon Biosensors. Pharm. Res. 2016, 33, 2314–2336. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.J.; Giovannini, G.; Kunc, F.; Hall, A.J.; Gubala, V. ‘Overloading’ fluorescent silica nanoparticles with dyes to improve biosensor performance. J. Mater. Chem. B 2017, 5, 5564–5572. [Google Scholar] [CrossRef]
- Miranda, O.R.; LI, X.; Garcia-Gonzales, L.; Zhu, Z.-J.; Yan, B.; Bunz, U.H.F.; Rotello, V.M. Colorimetric Bacteria Sensing Using a Supramolecular Enzyme-Nanoparticle Biosensor. J. Am. Chem. Soc. 2011, 133, 9650–9653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, L.; Zheng, L.; Zhang, H.; Jin, X.; Lin, J. An Ultrasensitive Fluorescent Biosensor using High Gradient Magnetic Separation and Quantum Dots for Fast Detection of Foodborne Pathogenic Bacteria. Sens. Actuators B 2018, 265, 318–325. [Google Scholar] [CrossRef]
- Krismastuti, F.S.H.; Pace, S.; Voelcker, N.H. Porous Silicon Resonant Microcavity Biosensor for Matrix Metalloproteinase Detection. Adv. Funct. Mater. 2014, 24, 3639–3650. [Google Scholar] [CrossRef]
- Jenie, S.N.A.; Prieto-Simon, B.; Voelcker, N.H. Development of L-lactate dehydrogenase biosensor based on porous silicon resonant microcavities as fluorescence enhancers. Biosens. Bioelectron. 2015, 74, 637–643. [Google Scholar] [CrossRef]
- Popat, A.; Ross, B.; Liu, J.; Jambhrunkar, S.; Kleitz, F.; Qiao, S.Z. Enzyme-Responsive Controlled Release of Covalently Bound Prodrug from Functional Mesoporous Silica Nanospheres. Angew. Chem. 2012, 51, 12486–12489. [Google Scholar] [CrossRef]
- Qhobosheane, M.; Santra, S.; Zhang, P.; Tan, W. Biochemically Functionalized Silica Nanoparticles. Analyst 2001, 126, 1274–1278. [Google Scholar] [CrossRef]
- Jenie, S.N.A.; Ghaisani, A.; Ningrum, Y.P.; Kristiani, A.; Aulia, F.; Petrus, H.T.M.B. Preparation of silica nanoparticles from geothermal sludge via sol-gel method. AIP Conf. Proc. 2018, 2026, 020008. [Google Scholar] [CrossRef]
- Bartasun, P.; Cieśliński, H.; Bujacz, A.; Wierzbicka-Woś, A.; Kur, J. A Study in The Interaction of Rhodamine B with Methylthioadenosine Phosphorylase Protein Sourced From An Antartic Soil Metagenomic Library. PLoS ONE 2013, 8, e55697. [Google Scholar] [CrossRef] [PubMed]
- Jenie, A.S.N.; Krismastuti, F.S.H.; Ningrum, Y.P.; Kristiani, A.; Yuniati, M.D.; Astuti, W.; Petrus, H.T.B.M. Geothermal silica-based fluorescent nanoparticles for the visualization of latent fingerprints. Mater. Express 2020, 10, 258–266. [Google Scholar] [CrossRef]
- Prabha, S.; Durgalakshmi, D.; Rajendran, S.; Lichtfouse, E. Plant-derived silica nanoparticles and composites for biosensors, bioimaging, drug delivery and supercapacitors: A review. Environ. Chem. Lett. 2020. [Google Scholar] [CrossRef] [PubMed]
- Cho, E.-B.; Volkov, D.O.; Sokolov, I. Ultrabright Fluorescent Mesoporous Silica Nanoparticles. Small 2010, 6, 2314–2319. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; He, J.; Deng, L.; Cao, H. Synthesis and characterization of functionalized rhodamine B-doped silica nanoparticles. Opt. Mater. 2009, 31, 1715–1719. [Google Scholar] [CrossRef]
- Olvianas, M.; Widiyatmoko, A.; Petrus, H.T.B.M. IR Spectral Similarity Studies of Geothermal Silica-Bentonite Based Geopolymer. AIP Conf. Proc. 2017, 1887, 020015. [Google Scholar] [CrossRef]
- Le, V.H.; Thuc, C.N.H.; Thuc, H.H. Synthesis of Silica Nanoparticles from Vietnamese Rice Husk by Sol-Gel Method. Nanoscale Res. Lett. 2013, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lakowicz, J.R.; Malicka, J.; D’Auria, S.; Gryczynski, I. Release of the self-quenching of fluorescence near silver metallic surfaces. Anal. Biochem. 2003, 320, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Cho, E.-B.; Volkov, D.O.; Sokolov, I. Ultrabright Fluorescent Silica Mesoporous Silica Nanoparticles: Control of Particle Size and Dye Loading. Adv. Funct. Mater. 2011, 21, 3129–3135. [Google Scholar] [CrossRef]
- Li, J.; Krasavin, A.V.; Webster, L.; Segovia, P.; Zayats, A.V.; Richards, D. Spectral variation of fluorescence lifetime near single metal nanoparticles. Sci. Rep. 2016, 6, 21349. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Jiang, C.; Wen, G.; Zhang, X.; Luo, Y.; Qin, A.; Liang, A.; Jiang, Z. A sensitive fluorescence method for detection of E. Coli using rhodamine 6G dyeing. Luminescence 2016, 31, 972–977. [Google Scholar] [CrossRef] [PubMed]
- Bosch, M.; Sánchez, A.; Rojas, F.; Ojeda, C. Recent Development in Optical Fiber Biosensors. Sensors 2007, 7, 797–859. [Google Scholar] [CrossRef] [Green Version]
- Monk, D.; Walt, D. Optical fiber-based biosensors. Anal. Bioanal. Chem. 2004, 379, 931–945. [Google Scholar] [CrossRef] [PubMed]
- Ince, R.; Narayanaswamy, R. Analysis of the performance of interferometry, surface plasmon resonance and luminescence as biosensors and chemosensors. Anal. Chim. Acta 2006, 569, 1–20. [Google Scholar] [CrossRef]
- Mirasoli, M.; Michelini, E. Analytical bioluminescence and chemiluminescence. Anal. Bioanal. Chem. 2014, 406, 5529–5530. [Google Scholar] [CrossRef] [Green Version]
- Benincasa, M.; Pacor, S.; Gennaro, R.; Scocchi, M. Rapid and reliable detection of antimicrobial peptide penetration into gram-negative bacteria based on fluorescence quenching. Antimicrob. Agents Chemother. 2009, 53, 3501–3504. [Google Scholar] [CrossRef] [Green Version]
- Cavaiuolo, M.; Paramithiotis, S.; Drosinos, E.H.; Ferrante, A. Development and optimization of an ELISA based method to detect Listeria monocytogenes and Escherichia coli O157 in fresh vegetables. Anal. Methods 2013, 5, 4622–4627. [Google Scholar] [CrossRef]
- Sahoo, A.K.; Sharma, S.; Chattopadhyay, A.; Ghosh, S.S. Quick and simple estimation of bacteria using a fluorescent paracetamol dimer–Au nanoparticle composite. Nanoscale 2012, 4, 1688–1694. [Google Scholar] [CrossRef]
- Hu, X.; Li, Y.; Xu, Y.; Gan, Z.; Zou, X.; Shi, J.; Huang, X.; Li, Z.; Li, Y. Green one-step synthesis of carbon quantum dots from orange peel for fluorescent detection of Escherichia coli in milk. Food Chem. 2021, 339, 127775. [Google Scholar] [CrossRef]
- Qiao, Y.; Geng, H.; Jiang, N.; Zhu, X.; Li, C.; Cai, Q. Polymyxin B–modified upconversion nanoparticles for selective detection of Gram-negative bacteria such as Escherichia coli. J. Chem. Res. 2020, 44, 756–761. [Google Scholar] [CrossRef]
- Wang, P.; Wang, A.; Hassan, M.M.; Ouyang, Q.; Li, H.; Chen, Q. A highly sensitive upconversion nanoparticles-WS2 nanosheet sensing platform for Escherichia coli detection. Sens. Actuators B 2020, 320, 128434. [Google Scholar] [CrossRef]
- Chen, Z.-Z.; Cai, L.; Chen, M.-Y.; Lin, Y.; Pang, D.-W.; Tang, H.-W. Indirect immunofluorescence detection of E. coli O157:H7 with fluorescent silica nanoparticles. Biosens. Bioelectron. 2015, 66, 95–102. [Google Scholar] [CrossRef] [PubMed]
Compound | Imax, a.u. | τH2O, ms |
---|---|---|
SNP-RB | 75.11 ± 3.35 | 0.009 ± 0.000 |
Rhodamine B | 38.94 ± 9.04 | 0.01 ± 0.000 |
Method | Principle | LOD | Linear Range | Response Time | Comment | Refs |
---|---|---|---|---|---|---|
Fluorescence R6G-dyeing | Strong fluorescence was observed from E. coli stained with R6G dye. | 2 CFU/mL | 2–88 CFU/mL | 12 h | Sensitive, simple, required 12 h of culturing bacteria | [34] |
Colorimetric | Detection was observed via color change on a paper-based analytical device (μPAD) which generated from the reaction of an enzyme from bacteria reacted with the chromogenic substance on the μPAD. | 10 CFU/mL | n.a. | 12 h | Simple, required 12 h of bacteria enrichment | [13] |
Fluorescence Quantum dots | The biosensor used a double channeled immune magnetic nanoparticles (MNPs) to separate the bacteria and quantum dots as the fluorescence reporter. | 14 CFU/mL | 8.9 × 100–8.9 × 105 CFU/mL | 2 h | Sensitive, rapid | [18] |
Fluorescence of nanocomposites | The detection of E. coli was based on the fluorescence quenching of paracetamol dimer and gold nanoparticle (AuNP) nanocomposites upon interaction with bacteria. | 100 CFU/mL | 102–106 CFU/mL | 15 min | Simple, rapid | [41] |
Electrochemical impedance spectroscopy (EIS) | The detection of E. coli was conducted via EIS on an antibody-modified gold electrodes on a self-assembled monolayer (SAM) | 2 CFU/mL | 3 × 10–3 × 104 CFU/ml | 45 min | Sensitive, rapid, label-free | [14] |
Fluorescence of carbon quantum dots | The detection was based on the fluorescence quenching of carbon quantum dots-magnetic nanoparticles (CQDs-MNPs) labelled with aptamer and complimentary DNA, respectively. | 487 CFU/mL | 500–106 CFU/mL | 40 min | Simple, rapid | [42] |
Fluorescence of upconversion nanoparticles | The detection was based on the fluorescence observed on the Yb-, Tm-, Fe-doped NaYF4 nanoparticles which are modified with polymyxin B in the prescence of E. coli bacteria. | 36 CFU/mL | 102–107 CFU/mL | 2 h | Simple, sensitive | [43] |
Fluorescence based on FRET | The detection of E. coli was based on the fluorescence quenching of fluorescence resonance energy transfer (FRET) between aptamer modified upconversion nanoparticles (UCNPs) as donors and layered tungsten disulfide (WS2) nanosheets as the acceptor. | 17 CFU/mL | 85–85 × 107 CFU/mL | 15 min | Simple, rapid, sensitive and selective | [44] |
Immunofluorescence Assay | The detection of E. coli was conducted through fluorescence microscopy or fluorescence cytometry using fluorescein isothocyanate (FITC)-doped silica nanoparticles modified with E. coli antibody. | n.a. | n.a. | 1 h | Rapid with intense luminescence and higher photostability | [45] |
Fluorescence of SNP-RB | The detection was based the fluorescence quenching of SNP-RB in the presence of E. coli bacteria. | 8 CFU/mL | 10–105 CFU/mL | 15 min | Simple, rapid, sensitive, selective and label-free | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jenie, S.N.A.; Kusumastuti, Y.; Krismastuti, F.S.H.; Untoro, Y.M.; Dewi, R.T.; Udin, L.Z.; Artanti, N. Rapid Fluorescence Quenching Detection of Escherichia coli Using Natural Silica-Based Nanoparticles. Sensors 2021, 21, 881. https://doi.org/10.3390/s21030881
Jenie SNA, Kusumastuti Y, Krismastuti FSH, Untoro YM, Dewi RT, Udin LZ, Artanti N. Rapid Fluorescence Quenching Detection of Escherichia coli Using Natural Silica-Based Nanoparticles. Sensors. 2021; 21(3):881. https://doi.org/10.3390/s21030881
Chicago/Turabian StyleJenie, S. N. Aisyiyah, Yuni Kusumastuti, Fransiska S. H. Krismastuti, Yovilianda M. Untoro, Rizna T. Dewi, Linar Z. Udin, and Nina Artanti. 2021. "Rapid Fluorescence Quenching Detection of Escherichia coli Using Natural Silica-Based Nanoparticles" Sensors 21, no. 3: 881. https://doi.org/10.3390/s21030881
APA StyleJenie, S. N. A., Kusumastuti, Y., Krismastuti, F. S. H., Untoro, Y. M., Dewi, R. T., Udin, L. Z., & Artanti, N. (2021). Rapid Fluorescence Quenching Detection of Escherichia coli Using Natural Silica-Based Nanoparticles. Sensors, 21(3), 881. https://doi.org/10.3390/s21030881