Phase Compensation of the Non-Uniformity of the Liquid Crystal on Silicon Spatial Light Modulator at Pixel Level
Abstract
:1. Introduction
2. Phase Modulation Non-Uniformity Analysis of LCoS-SLM
3. Phase Non-Uniformity Compensation Method
4. Experiments and Results
4.1. Optical Setup
4.2. Phase Non-Uniformity Measurement
4.3. Phase Non-Uniformity Compensation
4.4. Method Verification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, W.; Haitjema, H.; Fang, F.Z.; Leach, R.; Cheung, C.; Savio, E.; Linares, J.-M. On-machine and in-process surface metrology for precision manufacturing. CIRP Ann. 2019, 68, 843–866. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, Y.; Matsuno, Y.; Chen, Y.-L.; Matsukuma, H.; Gao, W. Design and testing of a micro-thermal sensor probe for nondestructive detection of defects on a flat surface. Nanomanuf. Metrol. 2018, 1, 45–57. [Google Scholar] [CrossRef]
- Fang, F.; Zhang, X.; Weckenmann, A.; Zhang, G.; Evans, C. Manufacturing and measurement of freeform optics. CIRP Ann. Manuf. Technol. 2013, 62, 823–846. [Google Scholar] [CrossRef]
- Sinefeld, D.; Ella, R.; Zaharan, O.; Valiano, Y. Adaptive wavefront aberration correction in a free-space fiber-optic system based only on the received power. In Lasers and Electro-Optics; Optical Society of America: Washington, DC, USA, 2011; pp. 1–2. [Google Scholar]
- Ma, H.; Liu, Z.; Wu, H.; Xu, X.; Chen, J. Adaptive correction of vortex laser beam in a closed-loop system with phase only liquid crystal spatial light modulator. Opt. Commun. 2012, 285, 859–863. [Google Scholar] [CrossRef]
- Krasin, G.; Kovalev, M.; Stsepuro, N.; Ruchka, P.; Odinokov, S. Lensless scheme for measuring laser aberrations based on computer-generated holograms. Sensors 2020, 20, 4310. [Google Scholar] [CrossRef] [PubMed]
- Agour, M.; Kolenovic, E.; Falldorf, C.; von Kopylow, C. Suppression of higher diffraction orders and intensity improvement of optically reconstructed holograms from a spatial light modulator. J. Opt. A Pure Appl. Opt. 2009, 11, 105405. [Google Scholar] [CrossRef]
- Onural, L.; Yaraş, F.; Kang, H. Digital holographic three-dimensional video displays. Proc. IEEE 2011, 99, 576–589. [Google Scholar] [CrossRef] [Green Version]
- Kacperski, J.; Kujawinska, M. Active, lcos based laser interferometer for microelements studies. Opt. Exp. 2006, 14, 9664–9678. [Google Scholar] [CrossRef]
- Bouchal, P.; Radek, Č.; Bouchal, Z. Polarization sensitive phase-shifting mirau interferometry using a liquid crystal variable retarder. Opt. Lett. 2015, 40, 4567. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Q.H.; Shen, C.; Zhou, X.; Liu, C.M. Active optical zoom system. Appl. Opt. 2014, 53, 7402–7406. [Google Scholar] [CrossRef]
- Xun, X.; Cohn, R.W. Phase calibration of spatially nonuniform spatial light modulators. Appl. Opt. 2004, 43, 6400. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lu, G.; Yu, F.T.S. Simple method for measuring phase modulation in liquid crystal televisions. Opt. Eng. 1994, 33, 3018–3022. [Google Scholar] [CrossRef]
- Harriman, J.L.; Linnenberger, A.; Serati, S.A. Improving spatial light modulator performance through phase compensation. In Proceedings of the SPIE—The International Society for Optical Engineering, Denver, CO, USA, 2–6 August 2004; Volume 5553, pp. 58–67. [Google Scholar]
- Pérez, J.O.; Ambs, P. Characterization and applications of a pure phase reflective liquid crystal spatial light modulator. In Proceedings of the Seventh International Conference on Correlation Optics, Chernivsti, Ukraine, 6–9 September 2006. [Google Scholar]
- Fuentes, J.L.M.; Fernández, E.J.; Prieto, P.M.; Artal, P. Interferometric method for phase calibration in liquid crystal spatial light modulators using a self-generated diffraction-grating. Opt. Exp. 2016, 24, 14159. [Google Scholar] [CrossRef] [PubMed]
- Otón, J.; Ambs, P.; Millán, M.S.; Pérez-Cabré, E. Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays. Appl. Opt. 2007, 46, 5667–5679. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Sheng, L.; Zeng, F.; Gao, S.; Qiao, Y. Improved method to fully compensate the spatial phase nonuniformity of lcos devices with a fizeau interferometer. Appl. Opt. 2016, 55, 7796. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhou, H.; Li, J.; Qiao, Y.J.; Si, J.; Gao, W. Compensation of phase nonlinearity of liquid crystal spatial light modulator for high-resolution wavefront correction. J. Eur. Opt. Soc. Rapid Pub. 2015, 10, 15036. [Google Scholar] [CrossRef] [Green Version]
- Engström, D.; Persson, M.; Bengtsson, J.; Goksör, M. Calibration of spatial light modulators suffering from spatially varying phase response. Opt. Exp. 2013, 21, 16086. [Google Scholar] [CrossRef] [Green Version]
- Reichelt, S. Spatially resolved phase-response calibration of liquid-crystal-based spatial light modulators. Appl. Opt. 2013, 52, 2610. [Google Scholar] [CrossRef]
- García-Márquez, J.; Landgrave, J.E.A.; Alcalá-Ochoa, N.; Pérez-Santos, C. Recursive wavefront aberration correction method for lcos spatial light modulators. Opt. Lasers Eng. 2011, 49, 743–748. [Google Scholar] [CrossRef]
- He, A.; Quan, C. Wavefront correction for spatial nonuniformity of the liquid crystal on silicon based spatial light modulator. Opt. Lasers Eng. 2019, 121, 377–388. [Google Scholar] [CrossRef]
- Xia, J.; Chang, C.; Chen, Z.; Zhu, Z.; Zeng, T.; Liang, P.Y.; Ding, J.; Xia, J.; Chang, C.; Chen, Z. Pixel-addressable phase calibration of spatial light modulators: A common-path phase-shifting interferometric microscopy approach. J. Opt. 2017, 19, 125701. [Google Scholar] [CrossRef]
- Jingquan, X.; Siyi, Q.; Chen, L.; Songnian, F.; Deming, L. Precise calibration of spatial phase response nonuniformity arising in liquid crystal on silicon. Opt. Lett. 2018, 43, 2993. [Google Scholar]
- Cheremkhin, P.A.; Krasnov, V.V.; Starikov, S.N. Reduction of phase temporal fluctuations caused by digital voltage addressing in lc slm “holoeye pluto vis” for holographic applications. In Proceedings of the Practical Holography XXVIII: Materials and Applications, San Francisco, CA, USA, 3–5 February 2014; Volume 9006. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Z.; Li, Z.; Fang, F.; Zhang, X. Phase Compensation of the Non-Uniformity of the Liquid Crystal on Silicon Spatial Light Modulator at Pixel Level. Sensors 2021, 21, 967. https://doi.org/10.3390/s21030967
Zeng Z, Li Z, Fang F, Zhang X. Phase Compensation of the Non-Uniformity of the Liquid Crystal on Silicon Spatial Light Modulator at Pixel Level. Sensors. 2021; 21(3):967. https://doi.org/10.3390/s21030967
Chicago/Turabian StyleZeng, Zhen, Zexiao Li, Fengzhou Fang, and Xiaodong Zhang. 2021. "Phase Compensation of the Non-Uniformity of the Liquid Crystal on Silicon Spatial Light Modulator at Pixel Level" Sensors 21, no. 3: 967. https://doi.org/10.3390/s21030967
APA StyleZeng, Z., Li, Z., Fang, F., & Zhang, X. (2021). Phase Compensation of the Non-Uniformity of the Liquid Crystal on Silicon Spatial Light Modulator at Pixel Level. Sensors, 21(3), 967. https://doi.org/10.3390/s21030967