Modeling of Laser-Induced Plasmon Effects in GNS-DLC-Based Material for Application in X-ray Source Array Sensors
Abstract
:1. Introduction
2. Features of the Processes of Tunnel Photoemission into Vacuum
3. Statement of the Problem of Modeling Hybrid Material
4. Results of Modeling and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hong, G.; Diao, S.; Antaris, A.L.; Dai, H. Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chem. Rev. 2015, 115, 10816–10906. [Google Scholar] [CrossRef]
- Qian, X.; Tucker, A.; Gidcumb, E.; Shan, J.; Yang, G.; Calderon-Colon, X.; Sultana, S.; Lu, J.; Zhou, O.; Spronk, D.; et al. High resolution stationary digital breast tomosynthesis using distributed carbon nanotube X-ray source array. Med. Phys. 2012, 39, 42090–42099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadsell, M.; Cao, G.; Zhang, J.; Burk, L.; Schreiber, T.; Schreiber, E.; Chang, S.; Lu, J.; Zhou, O. Pilot study for compact microbeam radiation therapy using a carbon nanotube field emission micro-CT scanner. Med. Phys. 2014, 41, 061710. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, J.; Wu, Q.; Liu, M.; Zhou, R.; Chen, Z. Fast microfocus X-ray tube based on carbon nanotube array. J. Vac. Sci. Technol. B 2019, 37, 051203. [Google Scholar] [CrossRef]
- Lin, Z.; Xie, P.; Zhan, R.; Chen, D.; She, J.; Deng, S.; Xu, N.; Chen, J. Defect-Enhanced Field Emission from WO3 Nanowires for Flat-Panel X-Ray Sources. ACS Appl. Nano Mater. 2019, 2, 5206–5213. [Google Scholar] [CrossRef]
- Gan, H.; Zhang, T.; Guo, Z.; Lin, H.; Li, Z.; Chen, H.; Chen, J.; Liu, F. The Growth Methods and Field Emission Studies of Low-Dimensional Boron-Based Nanostructures. Appl. Sci. 2019, 9, 1019. [Google Scholar] [CrossRef] [Green Version]
- Walker, B.J.; Radtke, J.; Chen, G.-H.; Eliceiri, K.W.; Mackie, T.R. A beam optics study of a modular multi-source X-ray tube for novel computed tomography applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2017, 868, 1–9. [Google Scholar] [CrossRef]
- Koh, A.L.; Gidcumb, E.; Zhou, O.; Sinclair, R. In Situ Field Emission of Carbon Nanotubes in Oxygen Using Environmental TEM and the Influence of the Imaging Electron Beam. Microsc. Microanal. 2017, 23, 910–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burk, L.M.; Lee, Y.Z.; Lu, J.; Zhou, O. Carbon Nanotube Field-Emission X-ray-Based Micro-computed Tomography for Biomedical Imaging. In Carbon Nanomaterials for Biomedical Applications; Zhang, M., Naik, R.R., Dai, L., Eds.; Springer: Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK; Cham, Switzeland, 2016; pp. 201–226. [Google Scholar] [CrossRef]
- Kang, J.-T.; Lee, H.-R.; Jeong, J.-W.; Kim, J.-W.; Park, S.; Shin, M.-S.; Yeon, J.-H.; Jeon, H.; Kim, S.-H.; Choi, Y.C.; et al. Fast and Stable Operation of Carbon Nanotube Field-Emission X-ray Tubes Achieved Using an Advanced Active-Current Control. IEEE Electron Device Lett. 2015, 36, 1209–1211. [Google Scholar] [CrossRef]
- Shan, J.; Tucker, A.W.; Lee, Y.Z.; Heath, M.D.; Wang, X.; Foos, D.H.; Lu, J.; Zhou, O. Stationary chest tomosynthesis using a carbon nanotube x-ray source array: A feasibility study. Phys. Med. Biol. 2014, 60, 81–100. [Google Scholar] [CrossRef]
- Cole, M.T.; Parmee, R.J.; Milne, W.I. Nanomaterial-based X-ray sources. Nanotechnology 2016, 27, 082501. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, Z.; Zhou, C.; Hong, X.; Chen, J.; Zhang, Q.; Jiang, C.; Ge, Y.; Yang, Y.; Liu, X.; et al. Evaluation of reconstruction algorithms for a stationary digital breast tomosynthesis system using a carbon nanotube X-ray source array. J. Xray Sci. Technol. 2020, 28, 1157–1169. [Google Scholar] [CrossRef]
- Aban’shin, N.P.; Avetisyan, Y.A.; Akchurin, G.G.; Loginov, A.P.; Morev, S.P.; Mosiyash, D.S.; Yakunin, A.N. A planar diamond-like carbon nanostructure for a low-voltage field emission cathode with a developed surface. Technol. Phys. Lett. 2016, 42, 509–512. [Google Scholar] [CrossRef]
- Aban’shin, N.P.; Loginov, A.P.; Mosiyash, D.S.; Yakunin, A.N. Theoretical and experimental study of characteristics of the planar tetrode with field emission of diamond-like carbon film. In Proceedings of the 2016 29th International Vacuum Nanoelectronics Conference (IVNC), Vancouver, BC, Canada, 11–15 July 2016; pp. 1–2. [Google Scholar] [CrossRef]
- Yakunin, A.N.; Aban’shin, N.P.; Mosiyash, D.S.; Avetisyan, Y.A.; Akchurin, G.G. Features of field emission and formation of electron beam in a multi-electrode planar cathode. In Proceedings of the International Conference on Actual Problems of Electron Devices Engineering (APEDE), Saratov, Russia, 27–28 September 2018; pp. 249–252. [Google Scholar] [CrossRef]
- Zimnyakov, D.A.; Aban’shin, N.P.; Akchurin, G.G.; Avetisyan, Y.A.; Loginov, A.P.; Yuvchenko, S.A.; Yakunin, A.N. Experimental study of a broadband vacuum photosensor with the tunnel emission from a metal nanoscale blade. Proc. Spie 2019, 11022, 110220A. [Google Scholar] [CrossRef]
- Yakunin, A.N.; Aban’shin, N.P.; Avetisyan, Y.A.; Akchurin, G.G.; Akchurin, G.G., Jr.; Loginov, A.P.; Morev, S.P.; Mosiyash, D.S. Stabilization of Field- and Photoemission of a Planar Structure with a Nanosized Diamond-Like Carbon Film. J. Commun. Technol. Electron. 2019, 64, 83–88. [Google Scholar] [CrossRef]
- Fabris, L. Gold Nanostars in Biology and Medicine: Understanding Physicochemical Properties to Broaden Applicability. J. Phys. Chem. C 2020, 124, 26540–26553. [Google Scholar] [CrossRef]
- Santiago, E.Y.; Besteiro, L.V.; Kong, X.-T.; Correa-Duarte, M.A.; Wang, Z.; Govorov, A.O. Efficiency of Hot-Electron Generation in Plasmonic Nanocrystals with Complex Shapes: Surface-Induced Scattering, Hot Spots, and Interband Transitions. ACS Photonics 2020, 7, 2807–2824. [Google Scholar] [CrossRef]
- Kong, X.-T.; Wang, Z.; Govorov, A.O. Plasmonic Nanostars with Hot Spots for Efficient Generation of Hot Electrons under Solar Illumination. Adv. Opt. Mater. 2017, 5, 1600594. [Google Scholar] [CrossRef] [Green Version]
- Besteiro, L.V.; Kong, X.-T.; Wang, Z.; Hartland, G.V.; Govorov, A.O. Understanding Hot-Electron Generation and Plasmon Relaxation in Metal Nanocrystals: Quantum and Classical Mechanisms. ACS Photonics 2017, 4, 2759–2781. [Google Scholar] [CrossRef] [Green Version]
- Brongersma, M.; Halas, N.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Zhukovsky, S.V.; Babicheva, V.E.; Uskov, A.V.; Protsenko, I.E.; Lavrinenko, A.V. Enhanced Electron Photoemission by Collective Lattice Resonances in Plasmonic Nanoparticle-Array Photodetectors and Solar Cells. Plasmonics 2014, 9, 283–289. [Google Scholar] [CrossRef]
- Forati, E.; Dill, T.J.; Tao, A.R.; Sievenpiper, D. Photoemission-based microelectronic devices. Nat. Commun. 2016, 7, 13399. [Google Scholar] [CrossRef] [Green Version]
- Piltan, S.; Sievenpiper, D. Plasmonic Nano-arrays for Enhanced Photoemission and Photodetection. JOSA B 2018, 35, 208–213. [Google Scholar] [CrossRef]
- Akchurin, G.G.; Yakunin, A.N.; Aban’shin, N.P.; Gorfinkel, B.I.; Akchurin, G.G., Jr. Controlling the Red Boundary of the Tunneling Photoeffect in Nanodimensional Carbon Structures in a Broad (UV–IR) Wavelength Range. Technol. Phys. Lett. 2013, 39, 544–547. [Google Scholar] [CrossRef]
- Yakunin, A.N.; Aban’shin, N.P.; Akchurin, G.G.; Avetisyan, Y.A.; Loginov, A.P.; Yuvchenko, S.A.; Zimnyakov, D.A. A Visible and Near-IR Tunnel Photosensor with a Nanoscale Metal Emitter: The Effect of Matching of Hot Electrons Localization Zones and a Strong Electrostatic Field. Appl. Sci. 2019, 9, 5356. [Google Scholar] [CrossRef] [Green Version]
- Pylaev, T.; Vanzha, E.; Avdeeva, E.; Khlebtsov, B.; Khlebtsov, N. A novel cell transfection platform based on laser optoporation mediated by Au nanostar layers. J. Biophotonics 2019, 12, e201800166. [Google Scholar] [CrossRef] [Green Version]
- Cristiano, M.N.; Tsoulos, T.V.; Fabris, L. Quantifying and optimizing photocurrent via optical modeling of gold nanostar-, nanorod-, and dimer-decorated MoS2 and MoTe2. J. Chem. Phys. 2020, 152, 014705. [Google Scholar] [CrossRef]
- Pettine, J.; Choo, P.; Medeghini, F.; Odom, T.W.; Nesbitt, D.J. Plasmonic nanostar photocathodes for opticallycontrolled directional currents. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Tsoulos, T.V.; Atta, S.; Lagos, M.J.; Beetz, M.; Batson, P.E.; Tsilomelekis, G.; Fabris, L. Colloidal plasmonic nanostar antennas with wide range resonance tunability. Nanoscale 2019, 11, 18662–18671. [Google Scholar] [CrossRef]
- Khlebtsov, N.G.; Zarkov, S.V.; Khanadeev, V.A.; Avetisyan, Y.A. A novel concept of two-component dielectric function for gold nanostars: Theoretical modeling and experimental verification. Nanoscale 2020, 12, 19963–19981. [Google Scholar] [CrossRef]
- Zarkov, S.; Avetisyan, Y.; Akchurin, G.; Akchurin, G., Jr.; Bibikova, O.; Tuchin, V.; Yakunin, A. Numerical modeling of plasmonic properties of gold nanostars to prove the threshold nature of their modification under laser pulse. Opt. Eng. 2020, 59, 061628. [Google Scholar] [CrossRef]
- Vigderman, L.; Khanal, B.P.; Zubarev, E.R. Functional Gold Nanorods: Synthesis, Self-Assembly, and Sensing Applications. Adv. Mater. 2012, 24, 4811–4841. [Google Scholar] [CrossRef]
- Zarkov, S.V.; Yakunin, A.N.; Avetisyan, Y.A.; Akchurin, G.G.; Akchurin, G.G., Jr.; Tuchin, V.V. The peculiarities of localized laser heating of a tissue doped by gold nanostars. Proc. Spie 2019. [Google Scholar] [CrossRef]
- Wave Optics Module User’s Guide. Available online: https://doc.comsol.com/5.3/doc/com.comsol.help.woptics/WaveOpticsModuleUsersGuide.pdf (accessed on 10 February 2021).
- Jin, J.-M. Theory and Computation of Electromagnetic Fields; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 3–560. ISBN 978-0-470-53359-8. [Google Scholar]
- Aban’shin, N.P.; Gorfinkel, B.I.; Morev, S.P.; Mosiyash, D.S.; Yakunin, A.N. Autoemission Structures of Nanosized Carbon with Ionic Protection. Studying the Prospects of Reliable Control in Forming Structures. Technol. Phys. Lett. 2014, 40, 404–407. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- Zhou, X.L.; Suzuki, T.; Nakajima, H.; Komatsu, K.; Kanda, K.; Ito, H.; Saitoh, H. Structural analysis of amorphous carbon films by spectroscopic ellipsometry, RBS/ERDA, and NEXAFS. Appl. Phys. Lett. 2017, 110, 201902. [Google Scholar] [CrossRef] [Green Version]
- König, T.A.F.; Ledin, P.A.; Kerszulis, J.; Mahmoud, M.A.; El-Sayed, M.A.; Reynolds, J.R.; Tsukruk, V.V. Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer. ACS Nano 2014, 8, 6182–6192. [Google Scholar] [CrossRef]
- Bibikova, O.; Popov, A.P.; Bykov, A.V.; Prilepskii, A.; Kinnunen, M.T.; Kordás, K.; Bogatyrev, V.; Khlebtsov, N.; Vainio, S.; Tuchin, V.V. Optical properties of plasmon-resonant bare and silica-coated nanostars used for cell imaging. J. Biomed. Opt. 2015, 20, 076017. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yakunin, A.N.; Zarkov, S.V.; Avetisyan, Y.A.; Akchurin, G.G.; Aban’shin, N.P.; Tuchin, V.V. Modeling of Laser-Induced Plasmon Effects in GNS-DLC-Based Material for Application in X-ray Source Array Sensors. Sensors 2021, 21, 1248. https://doi.org/10.3390/s21041248
Yakunin AN, Zarkov SV, Avetisyan YA, Akchurin GG, Aban’shin NP, Tuchin VV. Modeling of Laser-Induced Plasmon Effects in GNS-DLC-Based Material for Application in X-ray Source Array Sensors. Sensors. 2021; 21(4):1248. https://doi.org/10.3390/s21041248
Chicago/Turabian StyleYakunin, Alexander N., Sergey V. Zarkov, Yuri A. Avetisyan, Garif G. Akchurin, Nikolay P. Aban’shin, and Valery V. Tuchin. 2021. "Modeling of Laser-Induced Plasmon Effects in GNS-DLC-Based Material for Application in X-ray Source Array Sensors" Sensors 21, no. 4: 1248. https://doi.org/10.3390/s21041248
APA StyleYakunin, A. N., Zarkov, S. V., Avetisyan, Y. A., Akchurin, G. G., Aban’shin, N. P., & Tuchin, V. V. (2021). Modeling of Laser-Induced Plasmon Effects in GNS-DLC-Based Material for Application in X-ray Source Array Sensors. Sensors, 21(4), 1248. https://doi.org/10.3390/s21041248