Estimation of Vehicle Attitude, Acceleration, and Angular Velocity Using Convolutional Neural Network and Dual Extended Kalman Filter
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Data-Driven-Based Estimator (Neural Network) Design
3.1.1. Feature Selection
3.1.2. Network Design
3.2. Dual Extended Falman Filter Design
3.2.1. State Space Model
3.2.2. Observability Check
3.2.3. Dual Extended Kalman Filter Module
4. Results and Analysis
4.1. Roll and Pitch Estimator (Neural Network)
4.1.1. Dataset
4.1.2. Validation Result and Analysis
4.2. Acceleration and Angular Velocity Estimator (DEKF)
4.2.1. Validation Environment
4.2.2. Validation Results and Analysis
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Feature Importance Analysis
Feature Number | Feature Name |
---|---|
1 | Ax |
2 | Ay |
3 | Yaw Rate |
4 | Brake Pressure |
5 | Steering Angle |
6 | Engine Throttle |
7 | Wheel Speed (Vx) |
Appendix B. Hyperparameter of Neural Network
Part | Layer | Name | Filter Size | Activation | Output Size |
---|---|---|---|---|---|
CNN part | 1-layer | Fully connected | Leaky ReLU | (2002001) | |
2-layer | Convolution layer | (331) 8EA 1 | Leaky ReLU | (2002008) | |
3-layer | Convolution layer | (338) 16EA 1 | Leaky ReLU | (20020016) | |
4-layer | Convolution layer | (3316) 32EA 1 | Leaky ReLU | (20020032) | |
5-layer | Convolution layer | (5532) 32EA 2 | Leaky ReLU | (404032) | |
6-layer | Fully connected | Leaky ReLU | (2561) | ||
FCL part | 1-layer | Fully connected | Leaky ReLU | (2561) | |
2-layer | Fully connected | Leaky ReLU | (10241) | ||
3-layer | Fully connected | Leaky ReLU | (10241) | ||
4-layer | Fully connected | Leaky ReLU | (2561) | ||
Final Layer | Final layer | Fully connected | (21) |
References
- Lee, H. Reliability indexed sensor fusion and its application to vehicle velocity estimation. J. Dyn. Sys. Meas. Control 2006, 128, 236–243. [Google Scholar] [CrossRef]
- Chu, L.; Shi, Y.; Zhang, Y.; Liu, H.; Xu, M. Vehicle lateral and longitudinal velocity estimation based on Adaptive Kalman Filter. In Proceedings of the 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Chengdu, China, 20–22 August 2010. [Google Scholar] [CrossRef]
- Wu, L.-J. Experimental study on vehicle speed estimation using accelerometer and wheel speed measurements. In Proceedings of the 2011 Second International Conference on Mechanic Automation and Control Engineering, Inner Mongolia, China, 15–17 July 2011. [Google Scholar] [CrossRef]
- Klomp, M.; Gao, Y.; Bruzelius, F. Longitudinal velocity and road slope estimation in hybrid electric vehicles employing early detection of excessive wheel slip. Veh. Syst. Dyn. 2014, 52 (Suppl. S1), 172–188. [Google Scholar] [CrossRef]
- Song, C.K.; Uchanski, M.; Hedrick, J.K. Vehicle speed estimation using accelerometer and wheel speed measurements. In Proceedings of the SAE International Body Engineering Conference and Automotive & Transportation Technology Conference, Paris, France, 9–11 July 2002. [Google Scholar] [CrossRef]
- Jin, X.; Yin, G.; Chen, N. Advanced estimation techniques for vehicle system dynamic state: A survey. Sensors 2019, 19, 4289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Zhao, J.; LeCun, Y. Character-level convolutional networks for text classification. arXiv 2015, arXiv:1509.01626. [Google Scholar]
- Eric Tseng, H.; Xu, L.; Hrovat, D. Estimation of land vehicle roll and pitch angles. Veh. Syst. Dyn. 2007, 45, 433–443. [Google Scholar] [CrossRef]
- Xiong, L.; Xia, X.; Lu, Y.; Liu, W.; Gao, L.; Song, S.; Han, Y.; Yu, Z. IMU-Based Automated Vehicle Slip Angle and Attitude Estimation Aided by Vehicle Dynamics. Sensors 2019, 19, 1930. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.K.; Park, E.J.; Robinovitch, S.N. Estimation of attitude and external acceleration using inertial sensor measurement during various dynamic conditions. IEEE Trans. Instrum. Meas. 2012, 61, 2262–2273. [Google Scholar] [CrossRef] [Green Version]
- Suh, Y.-S.; Park, S.-K.; Kang, H.-J.; Ro, Y.-S. Attitude estimation adaptively compensating external acceleration. JSME Int. J. Ser. C Mech. Syst. Mach. Elem. Manuf. 2006, 49, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, H.; Tahir, M. Accurate attitude estimation of a moving land vehicle using low-cost MEMS IMU sensors. IEEE Trans. Intell. Transp. Syst. 2016, 18, 1723–1739. [Google Scholar] [CrossRef]
- Scholte, W.J.; Marco, V.R.; Nijmeijer, H. Experimental Validation of Vehicle Velocity, Attitude and IMU Bias Estimation. IFAC-PapersOnLine 2019, 52, 118–123. [Google Scholar] [CrossRef]
- Caron, F.; Duflos, E.; Pomorski, D.; Vanheeghe, P. GPS/IMU data fusion using multisensor Kalman filtering: Introduction of contextual aspects. Inf. Fusion 2006, 7, 221–230. [Google Scholar] [CrossRef]
- Bevly, D.M.; Ryu, J.; Gerdes, J.C. Integrating INS sensors with GPS measurements for continuous estimation of vehicle sideslip, roll, and tire cornering stiffness. IEEE Trans. Intell. Transp. Syst. 2006, 7, 483–493. [Google Scholar] [CrossRef]
- Ryu, J.; Rossetter, E.J.; Gerdes, J.C. Vehicle sideslip and roll parameter estimation using GPS. In Proceedings of the AVEC International Symposium on Advanced Vehicle Control, Hiroshima, Japan, 9–13 September 2002. [Google Scholar]
- Ahmad, I.; Benallegue, A.; El Hadri, A. Sliding mode based attitude estimation for accelerated aerial vehicles using GPS/IMU measurements. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013. [Google Scholar] [CrossRef]
- Rajamani, R.; Piyabongkarn, D.; Tsourapas, V.; Lew, J.Y. Parameter and state estimation in vehicle roll dynamics. IEEE Trans. Intell. Transp. Syst. 2011, 12, 1558–1567. [Google Scholar] [CrossRef]
- Garcia Guzman, J.; Prieto Gonzalez, L.; Pajares Redondo, J.; Sanz Sanchez, S.; Boada, B.L. Design of Low-Cost Vehicle Roll Angle Estimator Based on Kalman Filters and an IoT Architecture. Sensors 2018, 18, 1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.; Yim, S. Design of Robust Observers for Active Roll Control. IEEE Access 2019, 7, 173034–173043. [Google Scholar] [CrossRef]
- Chung, T.; Yi, S.; Yi, K. Estimation of vehicle state and road bank angle for driver assistance systems. Int. J. Automot. Technol. 2007, 8, 111–117. [Google Scholar]
- Tseng, H.E. Dynamic estimation of road bank angle. Veh. Syst. Dyn. 2001, 36, 307–328. [Google Scholar] [CrossRef]
- Oh, J.; Choi, S.B. Vehicle roll and pitch angle estimation using a cost-effective six-dimensional inertial measurement unit. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2013, 227, 577–590. [Google Scholar] [CrossRef]
- Kamal Mazhar, M.; Khan, M.J.; Bhatti, A.I.; Naseer, N. A Novel Roll and Pitch Estimation Approach for a Ground Vehicle Stability Improvement Using a Low Cost IMU. Sensors 2020, 20, 340. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Meléndez, L.; Boada, B.L.; Boada, M.J.L.; Gauchía, A.; Díaz, V. A sensor fusion method based on an integrated neural network and Kalman filter for vehicle roll angle estimation. Sensors 2016, 16, 1400. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Melendez, L.; Boada, B.L.; Boada, M.J.L.; Gauchia, A.; Diaz, V. Sensor Fusion based on an integrated neural network and probability density function (PDF) dual Kalman filter for on-line estimation of vehicle parameters and states. Sensors 2017, 17, 987. [Google Scholar] [CrossRef] [PubMed]
- González, L.P.; Sánchez, S.S.; Garcia-Guzman, J.; Boada, M.J.L.; Boada, B.L. Simultaneous Estimation of Vehicle Roll and Sideslip Angles through a Deep Learning Approach. Sensors 2020, 20, 3679. [Google Scholar] [CrossRef]
- Taehui, L.; Sang Won, Y. Estimation of Vehicle Roll and Road Bank Angle based on Deep Neural Network. In Proceedings of the KSAE 2018 Annual Autumn Conference & Exhibition, Jeongseon, Korea, 14–17 November 2018. [Google Scholar]
- Rajamani, R. Vehicle Dynamics and Control, 2nd ed.; Springer Science & Business Media: New York, NY, USA, 2011. [Google Scholar]
- Challita, N.; Khalil, M.; Beauseroy, P. New feature selection method based on neural network and machine learning. In Proceedings of the 2016 IEEE International Multidisciplinary Conference on Engineering Technology (IMCET), Beirut, Lebanon, 2–4 November 2016. [Google Scholar] [CrossRef]
- Yang, S.; Kim, J. Validation of the 6-dof vehicle dynamics model and its related VBA program under the constant radius turn manoeuvre. Int. J. Automot. Technol. 2012, 13, 593–605. [Google Scholar] [CrossRef]
- Ray, L.R. Nonlinear tire force estimation and road friction identification: Simulation and experiments. Automatica 1997, 33, 1819–1833. [Google Scholar] [CrossRef]
- Lee, D.-H.; Kim, I.-K.; Huh, K.-S. Tire Lateral Force Estimation System Using Nonlinear Kalman Filter. Trans. Korean Soc. Automot. Eng. 2012, 20, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Wenzel, T.A.; Burnham, K.; Blundell, M.; Williams, R. Dual extended Kalman filter for vehicle state and parameter estimation. Veh. Syst. Dyn. 2006, 44, 153–171. [Google Scholar] [CrossRef]
References | Methodology | Model |
---|---|---|
[8] | Linear observer | IMU kinematic model |
[9] | Kalman filter | IMU + Vehicle dynamics (bicycle model and wheel model) |
[10,11,12,13] | Kalman filter | IMU external acceleration model |
[14,15,16] | Kalman filter | IMU + GPS model |
[17] | Sliding mode observer | IMU + GPS model |
[18] | Dynamic observer | Vehicle roll dynamics |
[19] | Kalman filter | Vehicle roll dynamics |
[20] | Dual Kalman filter | Vehicle roll dynamics |
[21,22] | Linear observer | Vehicle lateral dynamics (bicycle model) |
[23,24] | Linear observer, Sliding mode observer | Vehicle lateral dynamics (bicycle model) + IMU |
[25,26,27] | Kalman filter + neural network | Vehicle roll dynamics + fully connected layer |
[28] | Neural network | Fully connected layer |
Feature Name | Description |
---|---|
Ax | Vehicle longitudinal acceleration from IMU |
Ay | Vehicle lateral acceleration from IMU |
Yaw Rate | Vehicle yaw rate from IMU |
Brake Pres | Brake pressure from the master cylinder |
Str Angle | Steering wheel angle |
Throttle | Engine throttle valve opening degree (0~1) |
WheelSpd (Vx) | Sum of the wheel rotation speed |
Condition | Description | |
---|---|---|
Case 1 | - | A stationary situation on the uphill |
Case 2 | Acceleration 0.5 g or higher Steering 5 deg or higher | Rapid acceleration with steering on downhill slope-quick deceleration |
Case 3 | Steering deg or higher Yaw rate 30 deg/s or higher | Accelerate-turn-deceleration with steering on flat road |
Case 4 | - | Common driving |
Case 1 | Case 2 | Case 3 | Case 4 | |||||
---|---|---|---|---|---|---|---|---|
Roll | Pitch | Roll | Pitch | Roll | Pitch | Roll | Pitch | |
RMSE (deg) | 0.1133 | 0.4188 | 0.0573 | 0.5422 | 0.1359 | 0.0958 | 0.5140 | 0.5283 |
Commercial sensor accuracy (deg) 1 | ≤±0.05 (static situation) | ≤±0.5 (dynamic situation) |
Sensor | Noise | Unit |
---|---|---|
IMU () | 0.1 (RMS) + 10 (%) | m/s2 |
IMU () | 0.01 (RMS) + 10 (%) | rad/s |
Steering angle | 0.05 (RMS) + 10 (%) | rad |
Engine torque | 7 (RMS) | Nm |
Brake pressure | 0.05 (RMS) | MPa |
Condition | Description | |
---|---|---|
Case 1 | Roll 30 deg or lower Pitch 3 deg or lower | U-turn with 30 degrees of bank angle |
Case 2 | Roll 30 deg or lower Pitch deg or lower | Sharp turn at 30 degrees of bank angle after 10 degrees of uphill and downhill |
Case 3 | - | Common driving |
Accuracy | |||
---|---|---|---|
DEKF (RMSE) | Commercial Sensor 1 | ||
(m/s2) | Case 1 | 0.4325 | ≤±0.5 |
Case 2 | 0.8075 | ||
Case 3 | 0.3087 | ||
(m/s2) | Case 1 | 0.8232 | ≤±0.5 |
Case 2 | 0.4204 | ||
Case 3 | 0.5085 | ||
(deg/s) | Case 1 | 0.7391 | ≤±3 |
Case 2 | 0.3953 | ||
Case 3 | 0.5844 | ||
(deg/s) | Case 1 | 5.8499 | ≤±2 |
Case 2 | 5.1394 | ||
Case 3 | 1.0542 | ||
(deg/s) | Case 1 | 1.9251 | - 2 |
Case 2 | 1.7475 | ||
Case 3 | 0.6704 |
RMSE | ||
---|---|---|
Without Cornering Stiffness Estimation | With Cornering Stiffness Estimation | |
(m/s2) | 0.5541 | 0.5085 |
(deg/s) | 0.6131 | 0.5844 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ok, M.; Ok, S.; Park, J.H. Estimation of Vehicle Attitude, Acceleration, and Angular Velocity Using Convolutional Neural Network and Dual Extended Kalman Filter. Sensors 2021, 21, 1282. https://doi.org/10.3390/s21041282
Ok M, Ok S, Park JH. Estimation of Vehicle Attitude, Acceleration, and Angular Velocity Using Convolutional Neural Network and Dual Extended Kalman Filter. Sensors. 2021; 21(4):1282. https://doi.org/10.3390/s21041282
Chicago/Turabian StyleOk, Minseok, Sungsuk Ok, and Jahng Hyon Park. 2021. "Estimation of Vehicle Attitude, Acceleration, and Angular Velocity Using Convolutional Neural Network and Dual Extended Kalman Filter" Sensors 21, no. 4: 1282. https://doi.org/10.3390/s21041282
APA StyleOk, M., Ok, S., & Park, J. H. (2021). Estimation of Vehicle Attitude, Acceleration, and Angular Velocity Using Convolutional Neural Network and Dual Extended Kalman Filter. Sensors, 21(4), 1282. https://doi.org/10.3390/s21041282