Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester
Abstract
:1. Introduction
2. System Design and Implementation
2.1. Pressure Fluctuation Energy Harvester
2.2. Interface Circuit
2.3. Wireless Sensor
3. Methods
3.1. Experimental Setup and Prototype
3.2. System Evaluation
4. Results and Discussions
4.1. Wireless Sensor Power Consumption
4.2. Frequency Response and Power Estimation
4.3. Full System Implementation Analysis
4.4. Evaluation of the Self-Powered Sensor System
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Freitas, F. The Generation and Transmission of Pressure Fluctuations in Pump Suction Lines. Ph.D. Thesis, University of Bath, Bath, UK, 1982. [Google Scholar]
- Wang, K.; Zhang, Z.; Xia, C.; Liu, Z. Experimental Investigation of Pressure Fluctuation, Vibration, and Noise in a Multistage Pump. Shock Vib. 2018, 2018, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ericson, L. On Fluid Power Pump and Motor Design: Tools for Noise Reduction. Ph.D. Thesis, Linköping University, Linköping, Sweden, 2012. [Google Scholar]
- Cunefare, K.A.; Verma, N.; Erturk, A.; Skow, E.; Savor, J.; Cacan, M. Energy Harvesting from Hydraulic Pressure Fluctuations; ASME SMASIS: Atlanta, GA, USA, 2012. [Google Scholar] [CrossRef]
- Aranda, J.J.; Bader, S.; Oelmann, B. Force Transmission Interfaces for Pressure Fluctuation Energy Harvesters; IEEE IECON: Washington, DC, USA, 2018; pp. 4230–4235. [Google Scholar] [CrossRef]
- Xiao, H.; Qie, H.; Bowen, C.R. Modelling of the circular edge-clamped interface of a hydraulic pressure energy harvester to determine power, efficiency and bandwidth. MSSP 2021, 146, 107013. [Google Scholar] [CrossRef]
- Aranda, J.J.; Bader, S.; Oelmann, B. A space-coiling resonator for improved energy harvesting in fluid power systems. Sens. Actuator A Phys. 2019, 291, 58–67. [Google Scholar] [CrossRef]
- Skow, E.; Cunefare, K.; Koontz, Z. Pressure ripple amplification within a hydraulic pressure energy harvester via Helmholtz resonator. J. Acoust. Soc. Am. 2015, 138, 1769. [Google Scholar] [CrossRef]
- Skow, E.; Leadenham, S.; Cunefare, K.A.; Erturk, A. Power conditioning for low-voltage piezoelectric stack energy harvesters. Proc. SPIE 2016, 9799, 97990P. [Google Scholar] [CrossRef]
- Swedberg, C. Stauff Markets RFID-Based Hydraulic Pressure Measurement System. Available online: https://www.rfidjournal.com/stauff-markets-rfid-based-hydraulic-pressure-measurement-system (accessed on 23 February 2021).
- Toothman, M.F.; Ting, E.; Skow, E.; Cunefare, K.A. Multifunctional Self-Powered Hydraulic System Sensor Node; SPIE Sensors and Smart Structures Technologies: Denver, CO, USA, 2018. [Google Scholar] [CrossRef]
- Schwartz, F.J.; Skow, E.A.; Erturk, A.; Cunefare, K.A. Energy Harvesting from Acoustic Fields for Self-Powered Sensors in Pumped Fluid Systems; SPIE: Portland, OR, USA, 2017. [Google Scholar] [CrossRef]
- Skow, E.A.; Cunefare, K.A.; Erturk, A. Power performance improvements for high pressure ripple energy harvesting. Smart Mater. Struct. 2014, 23, 104011. [Google Scholar] [CrossRef] [Green Version]
- Cao, D.X.; Duan, X.J.; Guo, X.Y.; Lai, S.K. Design and performance enhancement of a force-amplified piezoelectric stack energy harvester under pressure fluctuations in hydraulic pipeline systems. Sens. Actuators A Phys. 2020, 309, 112031. [Google Scholar] [CrossRef]
- Ren, H.; Wang, T. Development and modeling of an electromagnetic energy harvester from pressure fluctuations. Mechatronics 2018, 49, 36–45. [Google Scholar] [CrossRef]
- Wang, D.A.; Chao, C.W.; Chen, J.H. A miniature hydro-energy generator based on pressure fluctuation in Kármán vortex street. J. Intell. Mater. Syst. Struct. 2012, 24, 612–626. [Google Scholar] [CrossRef]
- Mo, C.; Radziemski, L.J.; Clark, W.W. Analysis of piezoelectric circular diaphragm energy harvesters for use in a pressure fluctuating system. Smart Mater. Struct. 2010, 19, 025016. [Google Scholar] [CrossRef]
- Edla, M.; Lim, Y.Y.; Deguchi, M.; Padilla, R.V.; Izadgoshasb, I. An Improved Self-Powered H-Bridge Circuit for Voltage Rectification of Piezoelectric Energy Harvesting System. IEEE J. Electron Devices Soc. 2020, 8, 1050–1062. [Google Scholar] [CrossRef]
- Chamanian, S.; Muhtaroglu, A.; Kulah, H. A Self-Adapting Synchronized-Switch Interface Circuit for Piezoelectric Energy Harvesters. IEEE Trans. Power Electron. 2020, 35, 901–912. [Google Scholar] [CrossRef]
- Shu, Y.C.; Lien, I.C.; Wu, W.J. An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Mater. Struct. 2007, 16, 2253–2264. [Google Scholar] [CrossRef]
- Liu, W.; Badel, A.; Formosa, F.; Zhu, Q.; Zhao, C.; Hu, G. A Comprehensive Analysis and Modeling of the Self-Powered Synchronous Switching Harvesting Circuit With Electronic Breakers. IEEE Trans. Ind. Electron 2018, 65, 3899–3909. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Hua, R.; Lu, Y.; Wang, Y.; Salman, E.; Liang, J. Boosting the efficiency of a footstep piezoelectric-stack energy harvester using the synchronized switch technology. J. Intell. Mat. Syst. 2019. [Google Scholar] [CrossRef]
- Covaci, C.; Gontean, A. Piezoelectric Energy Harvesting Solutions: A Review. Sensors 2020, 20, 3512. [Google Scholar] [CrossRef]
- Dell Anna, F.; Dong, T.; Li, P.; Wen, Y.; Yang, Z.; Casu, M.R.; Azadmehr, M.; Berg, Y. State-of-the-Art Power Management Circuits for Piezoelectric Energy Harvesters. IEEE Circ. Syst. Mag. 2018, 18, 27–48. [Google Scholar] [CrossRef]
- Ramadass, Y.K.; Chandrakasan, A.P. An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor. IEEE J. Solid State Circ. 2010. [Google Scholar] [CrossRef] [Green Version]
- Hara, Y.; Saito, K.; Makihara, K. Compact, digital and self-powered piezoelectric vibration energy harvester with generation control using voltage measurement circuit. Sens. Actuators A Phys. 2019, 299, 111609. [Google Scholar] [CrossRef]
- Liang, J.; Liao, W. Improved Design and Analysis of Self-Powered Synchronized Switch Interface Circuit for Piezoelectric Energy Harvesting Systems. IEEE Trans. Ind. Electron 2012, 59, 1950–1960. [Google Scholar] [CrossRef]
- Tabesh, A.; Frechette, L.G. A Low-Power Stand-Alone Adaptive Circuit for Harvesting Energy From a Piezoelectric Micropower Generator. IEEE Trans. Ind. Electron 2010, 57, 840–849. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Erturk, A. Energy harvesting from harmonic and noise excitation of multilayer piezoelectric stacks: Modeling and experiment. In Active and Passive Smart Structures and Integrated Systems 2013; SPIE: San Diego, CA, USA, 2013. [Google Scholar] [CrossRef]
- Safaei, M.; Sodano, H.A.; Anton, S.R. A review of energy harvesting using piezoelectric materials: State-of-the-art a decade later (2008–2018). Smart Mater. Struct. 2019, 28, 113001. [Google Scholar] [CrossRef]
- Xu, T.B.; Siochi, E.J.; Kang, J.H.; Zuo, L.; Zhou, W.; Tang, X.; Jiang, X. Energy harvesting using a PZT ceramic multilayer stack. Smart Mater. Struct. 2013. [Google Scholar] [CrossRef] [Green Version]
- Yuan, M.; Cao, Z.; Luo, J.; Chou, X. Recent Developments of Acoustic Energy Harvesting: A Review. Micromachines 2019, 10, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, M.; Cao, Z.; Luo, J.; Pang, Z. Helix structure for low frequency acoustic energy harvesting. Rev. Sci. Instruments 2018, 89, 055002. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.H.; Kim, J.E.; Kim, J.; Song, K. Sound energy harvesting using a doubly coiled-up acoustic metamaterial cavity. Smart Mater. Struct. 2017, 26, 075011. [Google Scholar] [CrossRef]
- Kushino, Y.; Koizumi, H. Piezoelectric Energy Harvesting Circuit Using Full-Wave Voltage Doubler Rectifier and Switched Inductor; IEEE ECCE: Pittsburgh, PA, USA, 2014; pp. 2310–2315. [Google Scholar]
- Do, X.; Ko, Y.; Nguyen, H.; Le, H.; Lee, S. An Efficient Parallel SSHI Rectifier for Piezoelectric Energy Scavenging Systems; ICACT: Gangwon, Korea, 2011; pp. 1394–1397. [Google Scholar]
- Liang, J.; Chung, H.S.H.; Liao, W.H. Dielectric loss against piezoelectric power harvesting. Smart Mater. Struct. 2014, 23, 092001. [Google Scholar] [CrossRef]
- Shi, G.; Xia, Y.; Ye, Y.; Qian, L.; Li, Q. An efficient self-powered synchronous electric charge extraction interface circuit for piezoelectric energy harvesting systems. J. Intell. Mater. Syst. Struct. 2016, 27, 2160–2178. [Google Scholar] [CrossRef]
- Chew, Z.J.; Ruan, T.; Zhu, M. Power Management Circuit for Wireless Sensor Nodes Powered by Energy Harvesting: On the Synergy of Harvester and Load. IEEE Trans. Power Electron. 2019, 34, 8671–8681. [Google Scholar] [CrossRef] [Green Version]
- Chew, Z.J.; Zhu, M. Adaptive Self-Configurable Rectifier for Extended Operating Range of Piezoelectric Energy Harvesting. IEEE Trans. Ind. Electron. 2020, 67, 3267–3276. [Google Scholar] [CrossRef] [Green Version]
- Dobkin, B. Analog Circuit and System Design: A Tutorial Guide to Applications and Solutions; Elsevier/Newnes: Boston, MA, USA, 2011. [Google Scholar]
- Aziz, P.; Sorensen, H.; Van der Spiegel, J. An Overview of Sigma-Delta Converters: How a 1-bit ADC achieves more than 16-bit resolution. IEEE Signal Process. Mag. 1996, 13, 61–84. [Google Scholar] [CrossRef]
- Walid, A.; Ismail, A.H. A 14-Bit Low-Power Interface Circuit for Piezo-Resistive Pressure Sensors; ICM: Casablanca, Morocco, 2015; pp. 166–169. [Google Scholar]
- Yurish, S. A Simple and Universal Resistive-Bridge Sensors Interface. Sens. Transducers. 2011, 10, 46–59. [Google Scholar]
- Aranda, J.J.; Bader, S.; Oelmann, B. An Apparatus for the Performance Estimation of Pressure Fluctuation Energy Harvesters. IEEE Trans. Instrum. Meas 2018, 67, 2705–2713. [Google Scholar] [CrossRef]
- Krihely, N.; Ben-Yaakov, S. Self-Contained Resonant Rectifier for Piezoelectric Sources Under Variable Mechanical Excitation. IEEE Trans. Power Electron. 2011, 26, 612–621. [Google Scholar] [CrossRef] [Green Version]
- Lu, S.; Boussaid, F. A Highly Efficient P-SSHI Rectifier for Piezoelectric Energy Harvesting. IEEE Trans. Power Electron. 2015, 30, 5364–5369. [Google Scholar] [CrossRef]
Component | Voltage [V] | Quiescent Current [nA] |
---|---|---|
Comparator (TLV3691) | 0.9–6.5 | 75 |
Analog switch (TS3A474X) | 1.8–3.6 | 75 |
D Flip-Flop (SN74AUP1G74) | 1.8–3.3 | 500 |
Logic Gates (NOR, NOT) | 0.8–3.3 | 500 |
Property | Value |
---|---|
3.5 | |
≈240 /−1 | |
Resonant Frequency | 34 |
Reference | [22] | [19] | [9] | [26] | [47] | [18] | [35] | This Work |
---|---|---|---|---|---|---|---|---|
Transducer | Amplified Stack | MEMS | Stack | Stack | Cantilever | Cantilever | Cantilever | Stack |
Capacitance | 2.1 uF | 2 nF | 1.9 uF | 661 nF | 18 nF | 30 nF | 110 nF | 3 uF |
Technique | PSSHI | SSH | Impedance matching | PSSHI | PSSHI | PSSHI | PSSHI | PSSHI |
Control Circuit | BJT switch | Digital | - | Digital | Comparator | Mosfet | Comparator | Comparator |
Type of Implementation | Discrete | CMOS 180 nm | Discrete | Digital | Discrete | Discrete | Off-the-shelf | Off-the-shelf |
Open Circuit Voltage (Vp) | 20 V | 1.12 V | 0.27 V | - | 2.4 V | 0.28–0.7 V | 5 V | 0.6–1.36 V |
Frequency | 1.5 Hz–2.3 Hz | 317 Hz | 450 Hz | 18.7 Hz | 225 Hz | 100 Hz | 112 Hz | 200 Hz |
Self-Powered | Yes | Yes | - | Yes | Yes | Yes | No | Yes |
Improvement | 1.7 | 4.75 | 4.8 | - | 5.8 | - | 1.2 | 1–2 |
Details | - | - | Multiplier | - | - | - | - | - |
Operation Mode | Off-resonance | Resonance | Off-resonance | Resonance | Resonance | Resonance | Resonance | Off-resonance |
DC-DC or Power Management | No | Yes | No | Yes | No | No | No | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aranda, J.J.; Bader, S.; Oelmann, B. Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester. Sensors 2021, 21, 1546. https://doi.org/10.3390/s21041546
Aranda JJ, Bader S, Oelmann B. Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester. Sensors. 2021; 21(4):1546. https://doi.org/10.3390/s21041546
Chicago/Turabian StyleAranda, Jesus Javier, Sebastian Bader, and Bengt Oelmann. 2021. "Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester" Sensors 21, no. 4: 1546. https://doi.org/10.3390/s21041546
APA StyleAranda, J. J., Bader, S., & Oelmann, B. (2021). Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester. Sensors, 21(4), 1546. https://doi.org/10.3390/s21041546