Surface Plasmon Enhanced Fluorescence Temperature Mapping of Aluminum Nanoparticle Heated by Laser
Abstract
:1. Introduction
2. Materials and Methods
2.1. Substrate Fabrication
2.1.1. Grating Fabrication
2.1.2. Nanocomposite Fabrication
2.2. Fluorescence Thermography Study
2.2.1. Experiment Apparatus
2.2.2. Temperature-Intensity Calibration
2.3. Fluorescence Thermography Experiment
2.3.1. Laser Power Calibration
2.3.2. Laser Heating Experiment
3. Results and Discussion
3.1. Temperature-Intensity Calibration
3.1.1. Temperature-Dependent Spectral Properties
3.1.2. Temperature-Dependent Image Properties
3.2. Characterization of Al NPs Heated in R6G-THV Matrix
3.3. Laser-induced Photothermal Heating
3.4. Aluminum Nanoparticle Photothermal Heat Generation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Isik, T.; Xu, X.; Son, S.F.; Gunduz, I.E.; Ortalan, V. Investigation of Polymer Matrix Nano-Aluminum Composites with Pulsed Laser Heating by In-Situ TEM. Propellants Explos. Pyrotech. 2019, 44, 1608–1612. [Google Scholar] [CrossRef]
- Wang, J.; Bassett, W.P.; Dlott, D.D. Shock initiation of nano-Al/Teflon: High dynamic range pyrometry measurements. J. Appl. Phys. 2017, 121, 085902. [Google Scholar] [CrossRef]
- Row, S.L.; Groven, L.J. Smart Energetics: Sensitization of the Aluminum-Fluoropolymer Reactive System. Adv. Eng. Mater. 2018, 20, 1–7. [Google Scholar] [CrossRef]
- Ruz-Nuglo, F.D.; Groven, L.J. 3-D Printing and Development of Fluoropolymer Based Reactive Inks. Adv. Eng. Mater. 2018, 20, 1–8. [Google Scholar] [CrossRef]
- Kostoglou, N.; Emre Gunduz, I.; Isik, T.; Ortalan, V.; Constantinides, G.; Kontos, A.G.; Steriotis, T.; Ryzhkov, V.; Bousser, E.; Matthews, A.; et al. Novel combustion synthesis of carbon foam-aluminum fluoride nanocomposite materials. Mater. Des. 2018, 144, 222–228. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Kline, D.J.; Zachariah, M.R. In-operando high-speed microscopy and thermometry of reaction propagation and sintering in a nanocomposite. Nat. Commun. 2019, 10, 3032. [Google Scholar] [CrossRef]
- Slipchenko, M.N.; Moody, C.E.; Miller, J.D.; Roy, S.; Gord, J.R.; Meyer, T.R. Micro-Optical Initiation of Nanoenergetic Materials Using a Temporally Tailored Variable-Pulse-Width Laser. J. Nanotechnol. Eng. Med. 2012, 3, 031007. [Google Scholar] [CrossRef] [Green Version]
- Gottfried, J.; Bukowski, E.; Gottfried, J.L.; Bukowski, E.J. Laser-shocked energetic materials with metal additives: Evaluation of chemistry and detonation performance. Appl. Opt. 2016, 56, B47–B57. [Google Scholar] [CrossRef]
- Wolenski, C.; Wood, A.; Mathai, C.J.; He, X.; McFarland, J.; Gangopadhyay, K.; Gangopadhyay, S.; Maschmann, M.R. Nanoscale surface reactions by laser irradiation of Al nanoparticles on MoO3 flakes. Nanotechnology 2019, 30, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Zheng, H.; Riehn, M.; Bok, S.; Gangopadhyay, K.; Maschmann, M.R.; Gangopadhyay, S. In Situ Characterization of Photothermal Nanoenergetic Combustion on a Plasmonic Microchip. ACS Appl. Mater. Interfaces 2018, 10, 427–436. [Google Scholar] [CrossRef]
- Halbertal, D.; Cuppens, J.; Shalom, M.B.; Embon, L.; Shadmi, N.; Anahory, Y.; Naren, H.R.; Sarkar, J.; Uri, A.; Ronen, Y.; et al. Nanoscale thermal imaging of dissipation in quantum systems. Nature 2016, 539, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Mi, C.; Zhou, J.; Wang, F.; Lin, G.; Jin, D. Ultrasensitive Ratiometric Nanothermometer with Large Dynamic Range and Photostability. Chem. Mater. 2019, 31, 9480–9487. [Google Scholar] [CrossRef]
- Brites, C.D.; Lima, P.P.; Silva, N.J.; Millán, A.; Amaral, V.S.; Palacio, F.; Carlos, L.D. Thermometry at the nanoscale. Nanoscale 2012, 4, 4799–4829. [Google Scholar] [CrossRef] [Green Version]
- Ross, D.; Gaitan, M.; Locascio, L.E. Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. Anal. Chem. 2001, 73, 4117–4123. [Google Scholar] [CrossRef] [PubMed]
- Natrajan, V.K.; Christensen, K.T. Two-color laser-induced fluorescent thermometry for microfluidic systems. Meas. Sci. Technol. 2009, 20, 015401. [Google Scholar] [CrossRef] [Green Version]
- Wegrzyn, I.; Ainla, A.; Jeffries, G.D.; Jesorka, A. An optofluidic temperature probe. Sensors 2013, 13, 4289–4302. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Firestone, G.; Fontecha, D.; Gorga, R.E.; Bochinski, J.R.; Clarke, L.I. Nanoparticle-based photothermal heating to drive chemical reactions within a solid: Using inhomogeneous polymer degradation to manipulate mechanical properties and segregate carbonaceous by-products. Nanoscale 2020, 12, 904–923. [Google Scholar] [CrossRef]
- Hsiao, W.W.; Hui, Y.Y.; Tsai, P.C.; Chang, H.C. Fluorescent Nanodiamond: A Versatile Tool for Long-Term Cell Tracking, Super-Resolution Imaging, and Nanoscale Temperature Sensing. Acc. Chem. Res. 2016, 49, 400–407. [Google Scholar] [CrossRef]
- Del Rosal, B.; Rocha, U.; Ximendes, E.C.; Martín Rodríguez, E.; Jaque, D.; Solé, J.G. Nd3+ ions in nanomedicine: Perspectives and applications. Opt. Mater. 2017, 63, 185–196. [Google Scholar] [CrossRef]
- Umatova, Z.; Zhang, Y.; Rajkumar, R.; Dobson, P.S.; Weaver, J.M. Quantification of atomic force microscopy tip and sample thermal contact. Rev. Sci. Instrum. 2019, 90, 095003. [Google Scholar] [CrossRef] [Green Version]
- Menges, F.; Mensch, P.; Schmid, H.; Riel, H.; Stemmer, A.; Gotsmann, B. Temperature mapping of operating nanoscale devices by scanning probe thermometry. Nat. Commun. 2016, 7, 10874. [Google Scholar] [CrossRef] [Green Version]
- Laraoui, A.; Aycock-Rizzo, H.; Gao, Y.; Lu, X.; Riedo, E.; Meriles, C.A. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe. Nat. Commun. 2015, 6, 8954. [Google Scholar] [CrossRef] [Green Version]
- Balčytis, A.; Ryu, M.; Juodkazis, S.; Morikawa, J. Micro-thermocouple on nano-membrane: Thermometer for nanoscale measurements. Sci. Rep. 2018, 8, 6324. [Google Scholar] [CrossRef] [Green Version]
- Lahiri, B.B.; Bagavathiappan, S.; Jayakumar, T.; Philip, J. Medical applications of infrared thermography: A review. Infrared Phys. Technol. 2012, 55, 221–235. [Google Scholar] [CrossRef]
- Usamentiaga, R.; Venegas, P.; Guerediaga, J.; Vega, L.; Molleda, J.; Bulnes, F.G. Infrared thermography for temperature measurement and non-destructive testing. Sensors 2014, 14, 12305–12348. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Ding, L.; Li, Y.; Li, X.; Fan, L.; Zhou, S.; Fang, D.; Yang, S. Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscale 2015, 7, 11727–11733. [Google Scholar] [CrossRef] [PubMed]
- Maestro, L.M.; Rodríguez, E.M.; Rodríguez, F.S.; la Cruz, M.I.; Juarranz, A.; Naccache, R.; Vetrone, F.; Jaque, D.; Capobianco, J.A.; Solé, J.G. CdSe quantum dots for two-photon fluorescence thermal imaging. Nano Lett. 2010, 10, 5109–5115. [Google Scholar] [CrossRef]
- Ding, Q.; Zhang, X.; Li, L.; Lou, X.; Xu, J.; Zhou, P.; Yan, M. Temperature dependent photoluminescence of composition tunable Zn_xAgInSe quantum dots and temperature sensor application. Opt. Express 2017, 25, 19065–19076. [Google Scholar] [CrossRef]
- Li, S.; Zhang, K.; Yang, J.M.; Lin, L.; Yang, H. Single quantum dots as local temperature markers. Nano Lett. 2007, 7, 3102–3105. [Google Scholar] [CrossRef]
- Wu, J.; Kwok, T.Y.; Li, X.; Cao, W.; Wang, Y.; Huang, J.; Hong, Y.; Zhang, D.; Wen, W. Mapping three-dimensional temperature in microfluidic chip. Sci. Rep. 2013, 3, 3321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.L.; Cao, B.S.; Rino, L.; He, Y.Y.; Feng, Z.Q.; Dong, B. Temperature and rhodamine B sensing based on fluorescence intensity ratio of Er3+ upconversion emissions. RSC Adv. 2017, 7, 48494–48500. [Google Scholar] [CrossRef] [Green Version]
- Ye, F.; Wu, C.; Jin, Y.; Chan, Y.H.; Zhang, X.; Chiu, D.T. Ratiometric temperature sensing with semiconducting polymer dots. J. Am. Chem. Soc. 2011, 133, 8146–8149. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Liu, X.; Qiao, Q.; Zhao, M.; Yin, W.; Mao, D.; Zhang, H.; Xu, Z. A twisted-intramolecular-charge-transfer (TICT) based ratiometric fluorescent thermometer with a mega-Stokes shift and a positive temperature coefficient. Chem. Commun. 2014, 50, 15811–15814. [Google Scholar] [CrossRef]
- Okabe, K.; Inada, N.; Gota, C.; Harada, Y.; Funatsu, T.; Uchiyama, S. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 2012, 3, 705. [Google Scholar] [CrossRef] [Green Version]
- Brites, C.D.; Balabhadra, S.; Carlos, L.D. Lanthanide-Based Thermometers: At the Cutting-Edge of Luminescence Thermometry. Adv. Opt. Mater. 2019, 7, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Li, C.; Yang, P.; Hou, Z.; Lin, J. 808-nm-Light-Excited Lanthanide-Doped Nanoparticles: Rational Design, Luminescence Control and Theranostic Applications. Adv. Mater. 2017, 29, 1605434. [Google Scholar] [CrossRef]
- Myint, T.; Gunawidjaja, R.; Eilers, H. Spectroscopic Properties of Nanophase Eu-Doped ZrO2 and Its Potential Application for Fast Temperature Sensing Under Extreme Conditions. J. Phys. Chem. C 2012, 116, 21629–21634. [Google Scholar] [CrossRef]
- Anderson, B.R.; Gunawidjaja, R.; Eilers, H. Spectroscopic Signatures of Sub-Second Laser-Calcined Dy3+-Doped Oxide Precursors for Use in ex Situ Thermal Impulse Sensors. J. Phys. Chem. C 2017, 121, 20955–20966. [Google Scholar] [CrossRef]
- Riedinger, A.; Guardia, P.; Curcio, A.; Garcia, M.A.; Cingolani, R.; Manna, L.; Pellegrino, T. Subnanometer local temperature probing and remotely controlled drug release based on Azo-functionalized iron oxide nanoparticles. Nano Lett. 2013, 13, 2399–2406. [Google Scholar] [CrossRef]
- Feng, J.; Tian, K.; Hu, D.; Wang, S.; Li, S.; Zeng, Y.; Li, Y.; Yang, G. A Triarylboron-Based Fluorescent Thermometer: Sensitive Over a Wide Temperature Range. Angew. Chem. 2011, 123, 8222–8226. [Google Scholar] [CrossRef]
- Feng, J.; Xiong, L.; Wang, S.; Li, S.; Li, Y.; Yang, G. Fluorescent temperature sensing using triarylboron compounds and microcapsules for detection of a wide temperature range on the micro- and macroscale. Adv. Funct. Mater. 2013, 23, 340–345. [Google Scholar] [CrossRef]
- Shah, J.J.; Sundaresan, S.G.; Geist, J.; Reyes, D.R.; Booth, J.C.; Rao, M.V.; Gaitan, M. Microwave dielectric heating of fluids in an integrated microfluidic device. J. Micromech. Microeng. 2007, 17, 2224–2230. [Google Scholar] [CrossRef] [Green Version]
- Culbertson, C.T.; Jacobson, S.C.; Michael Ramsey, J. Diffusion coefficient measurements in microfluidic devices. Talanta 2002, 56, 365–373. [Google Scholar] [CrossRef]
- Chen, B.; Zheng, H.; Yoon, J.; Bok, S.; Mathai, C.; Gangopadhyay, K.; Gangopadhyay, S.; Maschmann, M.R. Fluorescence-based temperature sensor for in-situ imaging local temperature of aluminum nanoparticles on plasmonic gratings. Proc. IEEE Sens. 2017, 6–8. [Google Scholar] [CrossRef]
- Kuzkova, N.; Popenko, O.; Yakunov, A. Application of temperature-dependent fluorescent dyes to the measurement of millimeter wave absorption in water applied to biomedical experiments. Int. J. Biomed. Imaging 2014, 2014, 243564. [Google Scholar] [CrossRef]
- Kan, T.; Aoki, H.; Binh-Khiem, N.; Matsumoto, K.; Shimoyama, I. Ratiometric optical temperature sensor using two fluorescent dyes dissolved in an ionic liquid encapsulated by parylene film. Sensors 2013, 13, 4138–4145. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, J.; Ma, J.; Liu, Y.; Wang, Y.; Wu, D. Ratiometric Nanothermometer Based on Rhodamine Dye-Incorporated F127-Melamine-Formaldehyde Polymer Nanoparticle: Preparation, Characterization, Wide-Range Temperature Sensing, and Precise Intracellular Thermometry. ACS Appl. Mater. Interfaces 2016, 8, 14396–14405. [Google Scholar] [CrossRef]
- Chen, B.; Wood, A.; Pathak, A.; Mathai, J.; Bok, S.; Zheng, H.; Hamm, S.; Basuray, S.; Grant, S.; Gangopadhyay, K.; et al. Plasmonic gratings with nano-protrusions made by glancing angle deposition for single-molecule super-resolution imaging. Nanoscale 2016, 8, 12189–12201. [Google Scholar] [CrossRef]
- Wood, A.; Barizuddin, S.; Darr, C.M.; Mathai, C.J.; Ball, A.; Minch, K.; Somoskovi, A.; Hamasur, B.; Connelly, J.T.; Weigl, B.; et al. Ultrasensitive detection of lipoarabinomannan with plasmonic grating biosensors in clinical samples of HIV negative patients with tuberculosis. PLoS ONE 2019, 14, e0214161. [Google Scholar] [CrossRef] [PubMed]
- Basuray, S.; Pathak, A.; Bok, S.; Chen, B.; Hamm, S.C.; Mathai, C.J.; Guha, S.; Gangopadhyay, K.; Gangopadhyay, S. Plasmonic nano-protrusions: Hierarchical nanostructures for single-molecule Raman spectroscopy. Nanotechnology 2017, 28, 025302. [Google Scholar] [CrossRef]
- Wood, A.; Mathai, C.J.; Gangopadhyay, K.; Grant, S.; Gangopadhyay, S. Single-Molecule Surface Plasmon-Coupled Emission with Plasmonic Gratings. ACS Omega 2017, 2, 2041–2045. [Google Scholar] [CrossRef]
- Chen, B.; Wood, A.; Darr, C.M.; Bok, S.; Gangopadhyay, K.; McFarland, J.A.; Maschmann, M.R.; Gangopadhyay, S. Single-molecule Imaging of Metallic Nanostructures on a Plasmonic Metal Grating Superlens. In Proceedings of the 2018 IEEE International Conference on Bioinformatics and Biomedicine BIBM, Madrid, Spain, 3–6 December 2018; pp. 2446–2452. [Google Scholar] [CrossRef]
- Chen, B.; Zheng, H.; Riehn, M.; Bok, S.; Gangopadhyay, K.; McFarland, J.; Gangopadhyay, S.; Maschmann, M.R. Enhanced fluorescence for in situ temperature mapping of photothermally heated aluminum nanoparticles enabled by a plasmonic grating substrate. Nanotechnology 2018, 29. [Google Scholar] [CrossRef]
- Innocenzi, P.; Kozuka, H.; Yoko, T. Dimer-to-monomer transformation of rhodamine 6G in sol-gel silica films. J. Non. Cryst. Solids 1996, 201, 26–36. [Google Scholar] [CrossRef]
- Wood, A.J.; Chen, B.; Pathan, S.; Bok, S.; Mathai, C.J.; Gangopadhyay, K.; Grant, S.A.; Gangopadhyay, S. Influence of silver grain size, roughness, and profile on the extraordinary fluorescence enhancement capabilities of grating coupled surface plasmon resonance. RSC Adv. 2015, 5, 78534–78544. [Google Scholar] [CrossRef]
- Chen, B.; Pathak, A.; Gangopadhyay, K.; Cornish, P.V.; Gangopadhyay, S. Single-Molecule Detection in Nanogap-Embedded Plasmonic Gratings. Nanobiomedicine 2015, 2, 2–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatnagar, K.; Pathak, A.; Menke, D.; Cornish, P.V.; Gangopadhyay, K.; Korampally, V.; Gangopadhyay, S. Fluorescence enhancement from nano-gap embedded plasmonic gratings by a novel fabrication technique with HD-DVD. Nanotechnology 2012, 23, 495201. [Google Scholar] [CrossRef] [PubMed]
- Darr, C.M.; Korampally, V.; Chen, B.; Gangopadhyay, K.; Gangopadhyay, S. Plasmonic-enhanced conjugated polymer fluorescence chemosensor for trace nitroaromatic vapor. Sens. Actuators B Chem. 2014, 202, 1088–1096. [Google Scholar] [CrossRef]
- Wood, A.; Chen, B.; Mathai, J.; Bok, S.; Grant, S.; Gangopadhyay, K.; Cornish, P.V.; Gangopadhyay, S. Super-Resolution Light Microscopy Using Plasmonic Gratings. Micros. Today 2017, 25, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Zehentbauer, F.M.; Moretto, C.; Stephen, R.; Thevar, T.; Gilchrist, J.R.; Pokrajac, D.; Richard, K.L.; Kiefer, J. Fluorescence spectroscopy of Rhodamine 6G: Concentration and solvent effects. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 121, 147–151. [Google Scholar] [CrossRef]
- Avnir, D.; Levy, D.; Reisfeld, R. The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped rhodamine 6G. J. Phys. Chem. 1984, 88, 5956–5959. [Google Scholar] [CrossRef]
- López Arbeloa, F.; Ruiz Ojeda, P.; López Arbeloa, I. Dimerization and trimerization of rhodamine 6G in aqueous solution. Effect on the fluorescence quantum yield. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 1988, 84, 1903–1912. [Google Scholar] [CrossRef]
- Hungerford, G.; Suhling, K.; Ferreira, J.A. Comparison of the fluorescence behaviour of rhodamine 6G in bulk and thin film tetraethylorthosilicate derived sol-gel matrices. J. Photochem. Photobiol. A Chem. 1999, 129, 71–80. [Google Scholar] [CrossRef]
- Martínez, V.M.; Arbeloa, F.L.; Prieto, J.B.; Arbeloa, I.L. Characterization of rhodamine 6G aggregates intercalated in solid thin films of laponite clay. 2 fluorescence spectroscopy. J. Phys. Chem. B 2005, 109, 7443–7450. [Google Scholar] [CrossRef]
- Soleilhac, A.; Girod, M.; Dugourd, P.; Burdin, B.; Parvole, J.; Dugas, P.Y.; Bayard, F.; Lacoîte, E.; Bourgeat-Lami, E.; Antoine, R. Temperature Response of Rhodamine B-Doped Latex Particles. From Solution to Single Particles. Langmuir 2016, 32, 4052–4058. [Google Scholar] [CrossRef] [PubMed]
- Takakura, H.; Zhang, Y.; Erdmann, R.S.; Thompson, A.D.; Lin, Y.; McNellis, B.; Rivera-Molina, F.; Uno, S.N.; Kamiya, M.; Urano, Y.; et al. Long time-lapse nanoscopy with spontaneously blinking membrane probes. Nat. Biotechnol. 2017, 35, 773–780. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, P.J.; Gayda, S.; Haack, R.A.; Ruan, Q.; Himmelsbach, R.J.; Tetin, S.Y. Rhodamine-Derived Fluorescent Dye with Inherent Blinking Behavior for Super-Resolution Imaging. Anal. Chem. 2018, 90, 9165–9173. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Bangalore Rajeeva, B.; Scarabelli, L.; Perillo, E.P.; Dunn, A.K.; Liz-Marzán, L.M.; Zheng, Y. Molecular-fluorescence enhancement via blue-shifted plasmon-induced resonance energy transfer. J. Phys. Chem. C 2016, 120, 14820–14827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakowicz, J.R.; Malicka, J.; Gryczynski, I.; Gryczynski, Z. Directional surface plasmon-coupled emission: A new method for high sensitivity detection. Biochem. Biophys. Res. Commun. 2003, 307, 435–439. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yang, Y.; Yu, H.; Dlott, D.D. Dynamical effects of the oxide layer in aluminum nanoenergetic materials. Propellants Explos. Pyrotech. 2005, 30, 148–155. [Google Scholar] [CrossRef]
- Smith, K.J.; Cheng, Y.; Arinze, E.S.; Kim, N.E.; Bragg, A.E.; Thon, S.M. Dynamics of Energy Transfer in Large Plasmonic Aluminum Nanoparticles. ACS Photonics 2018, 5, 805–813. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Y.; Yang, Y.; Dlott, D.D. Simulation of the absorption spectra of nanometallic Al particles with core—Shell structure: Size-dependent interband transitions. J. Nanopart. Res. 2010, 12, 777–787. [Google Scholar] [CrossRef]
- Lecarme, O.; Sun, Q.; Ueno, K.; Misawa, H. Robust and Versatile Light Absorption at Near-Infrared Wavelengths by Plasmonic Aluminum Nanorods. ACS Photonics 2014, 1, 538–546. [Google Scholar] [CrossRef]
- Jha, S.K.; Ahmed, Z.; Agio, M.; Ekinci, Y.; Löffler, J.F. Deep-Ultraviolet Surface-Enhanced Resonance Raman Scattering of Adenine on Aluminum Nanoparticle Arrays. J. Am. Chem. Soc. 2012, 134, 1966–1969. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, P.; Lu, S.; Yang, S.; Peng, F.; Chang, W.; Liu, K. Synthesis and Multipole Plasmon Resonances of Spherical Aluminum Nanoparticles. J. Phys. Chem. Lett. 2020, 11, 5836–5843. [Google Scholar] [CrossRef]
- West, P.R.; Ishii, S.; Naik, G.V.; Emani, N.K.; Shalaev, V.M.; Boltasseva, A. Searching for better plasmonic materials. Laser Photonics Rev. 2010, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
Parameters | Flat Silver | Silver Grating | ||||
---|---|---|---|---|---|---|
Nanoparticle Radius (nm) | 45 | 60 | 75 | 45 | 60 | 75 |
Experimental Heat Rate (µW) | 0.746 | 1.124 | 1.612 | 17.790 | 34.837 | 64.257 |
Experimental Volumetric Heating Rate (W/m3) | 1.95 × 1015 | 1.24 × 1015 | 0.91 × 1015 | 4.66 × 1016 | 3.85 × 1016 | 3.64 × 1016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakiyyan, N.; Darr, C.M.; Chen, B.; Mathai, C.; Gangopadhyay, K.; McFarland, J.; Gangopadhyay, S.; Maschmann, M.R. Surface Plasmon Enhanced Fluorescence Temperature Mapping of Aluminum Nanoparticle Heated by Laser. Sensors 2021, 21, 1585. https://doi.org/10.3390/s21051585
Zakiyyan N, Darr CM, Chen B, Mathai C, Gangopadhyay K, McFarland J, Gangopadhyay S, Maschmann MR. Surface Plasmon Enhanced Fluorescence Temperature Mapping of Aluminum Nanoparticle Heated by Laser. Sensors. 2021; 21(5):1585. https://doi.org/10.3390/s21051585
Chicago/Turabian StyleZakiyyan, Naadaa, Charles M. Darr, Biyan Chen, Cherian Mathai, Keshab Gangopadhyay, Jacob McFarland, Shubhra Gangopadhyay, and Matthew R. Maschmann. 2021. "Surface Plasmon Enhanced Fluorescence Temperature Mapping of Aluminum Nanoparticle Heated by Laser" Sensors 21, no. 5: 1585. https://doi.org/10.3390/s21051585
APA StyleZakiyyan, N., Darr, C. M., Chen, B., Mathai, C., Gangopadhyay, K., McFarland, J., Gangopadhyay, S., & Maschmann, M. R. (2021). Surface Plasmon Enhanced Fluorescence Temperature Mapping of Aluminum Nanoparticle Heated by Laser. Sensors, 21(5), 1585. https://doi.org/10.3390/s21051585