Navigation of a Freely Walking Fruit Fly in Infinite Space Using a Transparent Omnidirectional Locomotion Compensator (TOLC)
Abstract
:1. Introduction
2. Methods
2.1. Overview of Transparent Omnidirectional Locomotion Compensator (TOLC)
2.2. Behavior Imaging System
2.3. System Modeling
2.4. Tracking Path Generation
3. Result and Discussion
3.1. Drosophila Melanogaster
3.2. Step Response to the Control Input
3.3. Tracking of Unstimulated Behavior
3.4. Positive Phototaxis of Drosophila
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Webb, B. What does robotics offer animal behaviour? Anim. Behav. 2000, 60, 545–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patricelli, G.L. Robotics in the Study of Animal Behavior. In Encyclopedia of Animal Behavior; Academic Press: Cambridge, MA, USA, 2010; pp. 91–99. [Google Scholar]
- Klein, B.A.; Stein, J.; Taylor, R.C. Robots in the service of animal behavior. Commun. Integr. Biol. 2012, 5, 466–472. [Google Scholar] [CrossRef]
- Shi, Q.; Gao, Z.; Jia, G.; Li, C.; Huang, Q.; Ishii, H.; Takanishi, A.; Fukuda, T. Implementing Rat-Like Motion for a Small-Sized Biomimetic Robot Based on Extraction of Key Movement Joints. IEEE Trans. Robot. 2020, 1–16. [Google Scholar] [CrossRef]
- Romano, D.; Benelli, G.; Kavallieratos, N.G.; Athanassiou, C.G.; Canale, A.; Stefanini, C. Beetle-robot hybrid interaction: Sex, lateralization and mating experience modulate behavioural responses to robotic cues in the larger grain borer Prostephanus truncatus (Horn). Biol. Cybern. 2020, 114, 473–483. [Google Scholar] [CrossRef]
- Jolly, L.; Pittet, F.; Caudal, J.P.; Mouret, J.B.; Houdelier, C.; Lumineau, S.; de Margerie, E. Animal-to-robot social attachment: Initial requisites in a gallinaceous bird. Bioinspiration Biomim. 2016, 11, 016007. [Google Scholar] [CrossRef] [PubMed]
- Bidaye, S.S.; Machacek, C.; Wu, Y.; Dickson, B.J. Neuronal Control of Drosophila Walking Direction. Science 2014, 344, 97. [Google Scholar] [CrossRef]
- Donelson, N.C.; Kim, E.Z.; Slawson, J.B.; Vecsey, C.G.; Huber, R.; Griffith, L.C. High-resolution positional tracking for long-term analysis of Drosophila sleep and locomotion using the “tracker” program. PLoS ONE 2012, 7, e37250. [Google Scholar] [CrossRef]
- Censi, A.; Straw, A.D.; Sayaman, R.W.; Murray, R.M.; Dickinson, M.H. Discriminating external and internal causes for heading changes in freely flying Drosophila. PLoS Comput. Biol. 2013, 9, e1002891. [Google Scholar] [CrossRef] [Green Version]
- Gowda, S.B.M.; Paranjpe, P.D.; Reddy, O.V.; Thiagarajan, D.; Palliyil, S.; Reichert, H.; VijayRaghavan, K. GABAergic inhibition of leg motoneurons is required for normal walking behavior in freely moving Drosophila. Proc. Natl. Acad. Sci. USA 2018, 115, E2115–E2124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bath, D.E.; Stowers, J.R.; Hormann, D.; Poehlmann, A.; Dickson, B.J.; Straw, A.D. FlyMAD: Rapid thermogenetic control of neuronal activity in freely walking Drosophila. Nat. Methods 2014, 11, 756–762. [Google Scholar] [CrossRef]
- Tinkerhess, M.J.; Ginzberg, S.; Piazza, N.; Wessells, R.J. Endurance training protocol and longitudinal performance assays for Drosophila melanogaster. J. Vis. Exp. 2012. [Google Scholar] [CrossRef] [Green Version]
- Mendez, S.; Watanabe, L.; Hill, R.; Owens, M.; Moraczewski, J.; Rowe, G.C.; Riddle, N.C.; Reed, L.K. The TreadWheel: A Novel Apparatus to Measure Genetic Variation in Response to Gently Induced Exercise for Drosophila. PLoS ONE 2016, 11, e0164706. [Google Scholar] [CrossRef]
- Berlandi, J.; Lin, F.J.; Ambree, O.; Rieger, D.; Paulus, W.; Jeibmann, A. Swing Boat: Inducing and Recording Locomotor Activity in a Drosophila melanogaster Model of Alzheimer’s Disease. Front. Behav. Neurosci. 2017, 11, 159. [Google Scholar] [CrossRef] [Green Version]
- Grover, D.; Katsuki, T.; Greenspan, R.J. Flyception: Imaging brain activity in freely walking fruit flies. Nat. Methods 2016, 13, 569–572. [Google Scholar] [CrossRef]
- Fujiwara, T.; Cruz, T.L.; Bohnslav, J.P.; Chiappe, M.E. A faithful internal representation of walking movements in the Drosophila visual system. Nat. Neurosci. 2017, 20, 72–81. [Google Scholar] [CrossRef]
- Kain, J.; Stokes, C.; Gaudry, Q.; Song, X.; Foley, J.; Wilson, R.; de Bivort, B. Leg-tracking and automated behavioural classification in Drosophila. Nat. Commun. 2013, 4, 1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seelig, J.D.; Chiappe, M.E.; Lott, G.K.; Dutta, A.; Osborne, J.E.; Reiser, M.B.; Jayaraman, V. Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior. Nat. Methods 2010, 7, 535–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohatsu, S.; Yamamoto, D. Visually induced initiation of Drosophila innate courtship-like following pursuit is mediated by central excitatory state. Nat. Commun. 2015, 6, 6457. [Google Scholar] [CrossRef]
- Aimon, S.; Katsuki, T.; Jia, T.; Grosenick, L.; Broxton, M.; Deisseroth, K.; Sejnowski, T.J.; Greenspan, R.J. Fast near-whole-brain imaging in adult Drosophila during responses to stimuli and behavior. PLoS Biol. 2019, 17, e2006732. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.L.; Hermans, L.; Viswanathan, M.C.; Fortun, D.; Aymanns, F.; Unser, M.; Cammarato, A.; Dickinson, M.H.; Ramdya, P. Imaging neural activity in the ventral nerve cord of behaving adult Drosophila. Nat. Commun. 2018, 9, 4390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, C.; Maxey, J.R.; Sinha, S.; Savall, J.; Gong, Y.Y.; Schnitzer, M.J. Long-term optical brain imaging in live adult fruit flies. Nat. Commun. 2018, 9, 872. [Google Scholar] [CrossRef] [PubMed]
- Fry, S.N.; Rohrseitz, N.; Straw, A.D.; Dickinson, M.H. TrackFly: Virtual reality for a behavioral system analysis in free-flying fruit flies. J. Neurosci. Methods 2008, 171, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Naik, H.; Bastien, R.; Navab, N.; Couzin, I.D. Animals in Virtual Environments. IEEE Trans. Vis. Comput. Graph. 2020, 26, 2073–2083. [Google Scholar] [CrossRef] [Green Version]
- Stowers, J.R.; Fuhrmann, A.; Hofbauer, M.; Streinzer, M.; Schmid, A.; Dickinson, M.H.; Straw, A.D. Reverse Engineering Animal Vision with Virtual Reality and Genetics. Computer 2014, 47, 38–45. [Google Scholar] [CrossRef]
- Fry, S.N.; Sayaman, R.; Dickinson, M.H. The aerodynamics of hovering flight in Drosophila. J. Exp. Biol. 2005, 208, 2303–2318. [Google Scholar] [CrossRef] [Green Version]
- Dahmen, H.; Wahl, V.L.; Pfeffer, S.E.; Mallot, H.A.; Wittlinger, M. Naturalistic path integration of Cataglyphis desert ants on an air-cushioned lightweight spherical treadmill. J. Exp. Biol. 2017, 220, 634–644. [Google Scholar] [CrossRef] [Green Version]
- Witney, A.G.; Hedwig, B. Kinematics of phonotactic steering in the walking cricket Gryllus bimaculatus (de Geer). J. Exp. Biol. 2011, 214 Pt 1, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Götz, K.G.; Wenking, H. Visual control of locomotion in the walking fruitflyDrosophila. J. Comp. Physiol. 1973, 85, 235–266. [Google Scholar] [CrossRef]
- Kramer, E. The orientation of walking honeybees in odour fields with small concentration gradients. Physiol. Entomol. 1976, 1, 27–37. [Google Scholar] [CrossRef]
- Nagaya, N.; Mizumoto, N.; Abe, M.S.; Dobata, S.; Sato, R.; Fujisawa, R. Anomalous diffusion on the servosphere: A potential tool for detecting inherent organismal movement patterns. PLoS ONE 2017, 12, e0177480. [Google Scholar] [CrossRef] [Green Version]
- Shigaki, S.; Fukushima, S.; Kurabayashi, D.; Sakurai, T.; Kanzaki, R. A novel method for full locomotion compensation of an untethered walking insect. Bioinspiration Biomim. 2016, 12, 016005. [Google Scholar] [CrossRef] [PubMed]
- Masaaki, K.; Takaya, O. Development of a robot balancing on a ball. In Proceedings of the 2008 International Conference on Control, Automation and Systems, Seoul, Korea, 14–17 October 2008; pp. 433–438. [Google Scholar]
- Lauwers, T.B.; Kantor, G.A.; Hollis, R.L. A dynamically stable single-wheeled mobile robot with inverse mouse-ball drive. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation (ICRA 2006), Orlando, FL, USA, 15–19 May 2006; pp. 2884–2889. [Google Scholar]
- Nagarajan, U.; Mampetta, A.; Kantor, G.A.; Hollis, R.L. State transition, balancing, station keeping, and yaw control for a dynamically stable single spherical wheel mobile robot. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 998–1003. [Google Scholar]
- Moreno, J.; Clotet, E.; Lupiañez, R.; Tresanchez, M.; Martínez, D.; Pallejà, T.; Casanovas, J.; Palacín, J. Design, Implementation and Validation of the Three-Wheel Holonomic Motion System of the Assistant Personal Robot (APR). Sensors 2016, 16, 1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z. A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 1330–1334. [Google Scholar] [CrossRef] [Green Version]
- Robinson, J.D.; Holland, J.B.; Hayes, M.J.D.; Langlois, R.G. Velocity-Level Kinematics of the Atlas Spherical Orienting Device Using Omni-Wheels. Trans. Can. Soc. Mech. Eng. 2005, 29, 691–700. [Google Scholar] [CrossRef]
- Kwon, S.-H.; Bae, J.-E.; Lee, S.-H.; Lee, S.-D.; Chae, K.-S. Effects of gravity on positive phototaxis in fruit fly Drosophila melanogaster. Entomol. Res. 2016, 46, 272–277. [Google Scholar] [CrossRef]
- Mendes, C.S.; Bartos, I.; Akay, T.; Marka, S.; Mann, R.S. Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster. eLife 2013, 2, e00231. [Google Scholar] [CrossRef]
- Wosnitza, A.; Bockemühl, T.; Dübbert, M.; Scholz, H.; Büschges, A. Inter-leg coordination in the control of walking speed in Drosophila. J. Exp. Biol. 2013, 216, 480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camacho, E.F.; Alba, C.B. Model Predictive Control, 2nd ed.; Springer: London, UK, 2007. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pun, P.; Brown, J.; Cobb, T.; Wessells, R.J.; Kim, D.H. Navigation of a Freely Walking Fruit Fly in Infinite Space Using a Transparent Omnidirectional Locomotion Compensator (TOLC). Sensors 2021, 21, 1651. https://doi.org/10.3390/s21051651
Pun P, Brown J, Cobb T, Wessells RJ, Kim DH. Navigation of a Freely Walking Fruit Fly in Infinite Space Using a Transparent Omnidirectional Locomotion Compensator (TOLC). Sensors. 2021; 21(5):1651. https://doi.org/10.3390/s21051651
Chicago/Turabian StylePun, Pikam, Jacobs Brown, Tyler Cobb, Robert J. Wessells, and Dal Hyung Kim. 2021. "Navigation of a Freely Walking Fruit Fly in Infinite Space Using a Transparent Omnidirectional Locomotion Compensator (TOLC)" Sensors 21, no. 5: 1651. https://doi.org/10.3390/s21051651
APA StylePun, P., Brown, J., Cobb, T., Wessells, R. J., & Kim, D. H. (2021). Navigation of a Freely Walking Fruit Fly in Infinite Space Using a Transparent Omnidirectional Locomotion Compensator (TOLC). Sensors, 21(5), 1651. https://doi.org/10.3390/s21051651