Detection of Gadolinium with an Impedimetric Platform Based on Gold Electrodes Functionalized by 2-Methylpyridine-Substituted Cyclam
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Methods
2.3. Procedures
2.3.1. Synthesis of Bis-N-(Dimethylpyridine)-Armed Cyclam
2.3.2. Elaboration of the Bis-N-MPyC Thin Film on Gold Electrodes
2.3.3. Fourier Transform Infrared Spectroscopy (FTIR) in ATR Mode
2.3.4. Contact Angle Measurements
2.3.5. Surface Characterization Using Atomic Force Microscopy (AFM)
2.3.6. Impedance Spectroscopy (EIS)
3. Results and Discussion
3.1. Synthesis and Liquid 1H and 13C NMR Characterization
3.2. Elaboration of the Bis-N-MPyC Functionalized Gold Electrodes
3.3. Surface Characterization of the Functionalized Cyclam Film
3.3.1. FTIR-ATR Mode Spectroscopy
3.3.2. Surface Wettability
3.3.3. Atomic Force Microscopy
3.3.4. Determination of the Coverage of Modified Gold Wafers
3.4. Electrochemical Characteristics of the Functionalized Cyclam Electrode
3.4.1. Impedance Measurements and Equivalent Circuit Modeling
3.4.2. Effect of the Lanthanide Concentration on the Impedance of the N-MNCyclen Functionalized Gold Electrodes
3.5. Analytical Performance of the Impedimetric Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Charalampides, G.; Vatalis, K.; Karayannis, V.; Baklavaridis, A. Environmental defects and economic impact on global market of rare earth metals. IOP Conf Ser. Mater. Sci. Eng. 2016, 161, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lucas, J.; Lucas, P.; Mercier, T.L.; Rollat, A.; Davenport, W. Chapter 3: Mining and rare earth concentrate production. In Rare Earths, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 31–46. [Google Scholar]
- Kamenopoulos, S.N.; Agioutantis, Z.; Komnitsas, K. Chapter 7: Framework for sustainable mining of rare earth elements. In Rare Earths Industry, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 111–120. [Google Scholar]
- García, M.V.R.; Krzemień, A.; Manzanedo del Campo, M.A.; Álvarez, M.M.; Gent, M.R. Rare earth elements mining investment: It is not all about China. Resour. Policy 2017, 53, 66–76. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Wen, Q.; Jia, Q.; Liu, Q. Interspecific associations of plant populations in rare earth mining wasteland in southern china. Int. Biodeterior. Biodegr. 2017, 118, 82–88. [Google Scholar] [CrossRef]
- Schulze, R.; Weidema, B.P.; Schebek, L.; Buchert, M. Recycling and its effects on joint production systems and the environment–The case of rare earth magnet recycling-Part I-Production model. Resour. Conserv. Recycl. 2018, 134, 336–346. [Google Scholar] [CrossRef]
- Nieto, A.; Guelly, K.; Kleit, A. Addressing criticality for rare earth elements in petroleum refining: The key supply factors approach. Resour. Policy 2013, 38, 496–503. [Google Scholar] [CrossRef]
- Qiu, T.; Liu, Q.; Fang, X.; Peng, S. Characteristic of synergistic extraction of oxalic acid with system from rare earth metallurgical wastewater. J. Rare Earths 2010, 28, 858–861. [Google Scholar] [CrossRef]
- Merschel, G.; Bau, M. Rare earth elements in the aragonitic shell of freshwater mussel Corbicula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water. Sci. Total Environ. 2015, 533, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Hissler, C.; Stille, P.; Guignard, C.; Iffly, J.F.; Pfister, L. Rare earth elements as hydrological tracers of anthropogenic and critical zone contributions: A case study at the Alzette river basin scale. Procedia Earth Planetary Sci. 2014, 10, 349–352. [Google Scholar] [CrossRef] [Green Version]
- Barry, M.J.; Meehan, B.J. The acute and chronic toxicity of lanthanum to Daphnia carinata. Chemosphere 2000, 41, 1669–1674. [Google Scholar] [CrossRef]
- Zhang, Y.A.; Zhong, C.; Zhang, Q.Y.; Chen, B.B.; He, M.; Hu, B. Graphene oxide-TiO2 composite as a novel adsorbent for the preconcentration of heavy metals and rare earth elements in environmental samples followed by on-line inductively coupled plasma optical emission spectrometry detection. RSC Adv. 2015, 5, 5996–6005. [Google Scholar] [CrossRef]
- Ni, Z.Y.; Cheng, D.W.; Liu, M.B.; Han, B.; Li, X.J.; Chen, J.W. The rapid detection of La and Ce in steel materials by portable EDXRF. Spectrosc. Spectr. Anal. 2020, 40, 2974–2980. [Google Scholar]
- Manousi, N.; Gomez-Gomez, B.; Madrid, Y.; Deliyanni, E.A.; Zachariadis, G.A. Determination of rare earth elements by inductively coupled plasma-mass spectrometry after dispersive solid phase extraction with novel oxidized graphene oxide and optimization with response surface methodology and central composite design. Microchem. J. 2020, 152, 104428. [Google Scholar] [CrossRef]
- Stokley, M.B.; Landsberger, S. A non-destructive analytical technique for low level detection of praseodymium using epithermal neutron activation analysis and Compton suppression gamma-ray spectroscopy. J. Radioanal. Nucl. Chem. 2018, 318, 369–373. [Google Scholar] [CrossRef]
- Li, F.K.; Gong, A.J.; Qiu, L.N.; Zhang, W.W.; Li, J.R.; Liu, Y.; Li, J.D.; Gao, G.; Yuan, X.T. Determination of trace rare earth elements in fruits by microwave digestion coupled with inductively coupled plasma optical emission spectrometry. Microchem. J. 2019, 147, 93–101. [Google Scholar] [CrossRef]
- Pourjavid, M.R.; Sehat, A.A.; Rezaee, M.; Hosseini, M.H.; Razavi, T. Design and construction of high-sensitive and selective dysprosium(III) electrochemical membrane sensor based on a thiourea derivative. Int. J. Electrochem. Sci. 2012, 7, 5133–5146. [Google Scholar]
- Bandi, K.R.; Singh, A.K.; Upadhyay, A. Biologically active Schiff bases as potentiometric sensor for the selective determination of Nd3+ ion. Electrochim. Acta 2013, 105, 654–664. [Google Scholar] [CrossRef]
- Karimian, S.; Zamani, H.A.; Vahdani, M. Construction of a new lutetium(III) PVC-membrane electrochemical sensor based on 4’-carboxybenzo-18-crown-6. Int. J. Electrochem. Sci. 2013, 8, 2710–2721. [Google Scholar]
- Hatamluyi, B.; Zamani, H.A.; Behmadi, H. Fabrication of a PVC-membrane electrochemical sensor based on a 4-(3-nitrophenyl)-2,6-di-2-thienylpyridine as a sensing material for determination of thallium(III) ions. Int. J. Electrochem. Sci. 2013, 8, 2746–2755. [Google Scholar]
- Sanavi-Khoshnod, R.; Zamani, H.A.; Joz-Yarmohammadi, F.; Mohammadhosseini, M.; Abedi, M.R. A new highly selective neodymium(III) polyvinylchloride membrane electrode based on 4-hydroxypyrrolidine-2-carboxylic acid as an active material. J. Anal. Chem. 2018, 73, 71–81. [Google Scholar] [CrossRef]
- Joz-Yarmohammadi, F.; Zamani, H.A.; Mohammadabadi, F. Improvement of a Lu3+ carbon paste electrode based on MWCNT/nanosilica/binder/ionophore nanocomposite. Int. J. Electrochem. Sci. 2015, 10, 8124–8136. [Google Scholar]
- Cruickshank, L.; Officer, S.; Pollard, P.; Prabhu, R.; Stutter, M.; Fernandez, C. Rare elements electrochemistry: The development of a novel electrochemical sensor for the rapid detection of europium in environmental samples using gold electrode modified with 2-pyridinol-1-oxide. Anal. Sci. 2015, 31, 623–627. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, T.; Amjadi, S. Synthesis of nano-sized Eu3+-imprinted polymer and its application for indirect voltammetric determination of europium. Talanta 2013, 106, 431–439. [Google Scholar] [CrossRef]
- Alizadeh, T.; Ganjali, M.R.; Akhoundian, M.; Norouzi, P. Voltammetric determination of ultratrace levels of cerium(III) using a carbon paste electrode modified with nano-sized cerium-imprinted polymer and multiwalled carbon nanotubes. Microchim. Acta 2016, 183, 1123–1130. [Google Scholar] [CrossRef]
- Tweedle, M. Relaxation agents in NMR imaging. In Lanthanide Probes in Life, Chemical and Earth Sciences. Theory and Practice; Bunzli, J.-C.G., Choppin, G.R., Eds.; Elsevier: New York, NY, USA, 1989; pp. 127–179. [Google Scholar]
- Tweedle, M.F.; Hagan, J.J.; Kumar, K.; Mantha, S.; Chang, C.A. Reaction of gadolinium chelates with endogenously available ions. Magn. Reson. Imaging 1991, 9, 409–415. [Google Scholar] [CrossRef]
- Ortega, C.; Gomez, M.R.; Olsina, R.A.; Silva, M.F.; Martinez, L.D. On-line cloud point preconcentration and determination of gadolinium in urine using flow injection inductively coupled plasma optical emission spectrometry. J. Anal. Atom. Spectrom. 2002, 17, 530–533. [Google Scholar] [CrossRef]
- Ben Mefteh, W.; Touzi, H.; Chevalier, Y.; Ben Ouada, H.; Othmane, A.; Kalfat, R.; Jaffrezic-Renault, N. Comparison of polysiloxane films substituted by undecenyl-cyclam and by naphthyl-cyclam for the design of ISFET devices sensitive to Fe3+ ions. Sens. Actuators B Chem. 2014, 204, 723–733. [Google Scholar] [CrossRef]
- Oukhatar, F.; Beyler, M.; Tripier, R. Straightforward and mild deprotection methods of N-mono-and N1,N7-functionalised bisaminalcyclens. Tetrahedron 2015, 71, 3857–3862. [Google Scholar] [CrossRef]
- Lewis, E.A.; Allan, C.C.; Boyle, R.W.; Archibald, S.J. Efficient N-and C-functionalization of cyclam macrocycles utilising bisaminal methodology. Tetrahedron Lett. 2004, 45, 3059–3062. [Google Scholar] [CrossRef]
- Royal, G.; Dahaoui-Gindrey, V.; Dahaoui, S.; Tabard, A.; Guilard, R.; Pullumbi, P.; Lecomte, C. New synthesis of trans-disubstituted cyclam macrocycles-Elucidation of the disubstitution mechanism on the basis of X-ray data and molecular modeling. Eur. J. Org. Chem. 1998, 9, 1971–1975. [Google Scholar] [CrossRef]
- Alizadeh, T.; Ganzali, M.R.; Alizadeh, H. Competitive extraction of Gd(III) into a carbon paste electrode impregnated with a nano-sized Gd(III)-imprinted polymer as a new method for its indirect voltammetric determination. Microchim. Acta 2015, 182, 1205–1212. [Google Scholar] [CrossRef]
- Ben Mefteh, W.; Touzi, H.; Bessueille, F.; Chevalier, Y.; Kalfat, R.; Jaffrezic-Renault, N. An impedimetric sensor based on a gold electrode functionalized with a thiol self-assembled monolayer modified by terpyridine ligands for the detection of free gadolinium ions. Electroanalysis 2015, 27, 84–92. [Google Scholar] [CrossRef]
- Al-Gharabli, S.; Kujawski, W.; Arafat, H.A.; Kujawa, J. Tunable separation via chemical functionalization of polyvinylidene fluoride membranes using piranha reagent. J. Membrane Sci. 2017, 541, 567–579. [Google Scholar] [CrossRef]
- Kloubek, J. Development of methods for surface free energy determination using contact angles of liquids on solids. Adv. Colloid Interface Sci. 1992, 38, 99–142. [Google Scholar] [CrossRef]
- Root, D.P.; Priyantha, N. Acetate adsorption and metal overlayers on electrode surfaces. Electrochim. Acta 1991, 36, 2109–2112. [Google Scholar] [CrossRef]
- Jenkins, S.J. Aromatic adsorption on metals via first-principles density functional theory. Proc. R. Soc. A 2009, 465, 2949–2976. [Google Scholar] [CrossRef]
- Busby, C.C.; Creighton, J.A. Efficient gold and silver electrodes for surface enhanced Raman spectral studies of electrochemical systems: The behaviour of pyridine and naphthalene adsorbed on roughened gold electrodes. J. Electroanal. Chem. 1982, 140, 379–390. [Google Scholar] [CrossRef]
- Volpe, C.D.; Siboni, S. Some reflections on acid-base solid surface free energy theories. J. Colloid Interface Sci. 1997, 195, 121–136. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, J.R. Impedance spectroscopy and its use in analyzing the steady-state AC response of solid and liquid electrolytes. J. Electroanal. Chem. 1987, 223, 25–50. [Google Scholar] [CrossRef]
- Jardim, P.L.G.; Michels, A.F.; Horowitz, F. Spin-coating process evolution and reproducibility for power-law fluids. Appl. Opt. 2014, 53, 1820–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nonat, A.; Giraud, M.; Gateau, C.; Fries, P.H.; Helm, L.; Mazzanti, M. Gadolinium(III) complexes of 1,4,7-triazacyclononane based picolinate ligands: Simultaneous optimization of water exchange kinetics and electronic relaxation. Dalton Trans. 2009, 38, 8033–8046. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Lever, S.Z. Formation kinetics and stability studies on the lanthanide complexes of 1,4,7,10-tetraazacyclododecane-N,N’,N”,N”’-tetraacetic acid capillary electrophoresis. Electrophoresis 2002, 23, 1348–1356. [Google Scholar] [CrossRef]
- Fisher, C.M.; Fuller, E.; Burke, B.P.; Mogilireddy, V.; Pope, S.J.A.; Sparke, A.E.; Dechamps-Olivier, I.; Cadiou, C.; Chuburu, F.; Faulkner, S.; et al. A benzimidazole functionalised DO3A chelator showing pH switchable coordination modes with lanthanide ions. Dalton Trans. 2014, 43, 9567. [Google Scholar] [CrossRef]
- Zare-Dorabei, R.; Norouzi, P.; Ganjali, M.R. Design of a novel optical sensor for determination of trace gadolinium. J. Hazard. Mater. 2009, 171, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Zare-Dorabei, R.; Norouzi, P.; Ganjali, M.R. Design of a novel gadolinium optical sensor based on immobilization of (Z)-N′-((pyridine-2-yl) methylene) thiophene-2-carbohydrazide on a triacetylcellulose membrane and its application to the urine samples. Anal. Lett. 2009, 42, 190–203. [Google Scholar] [CrossRef]
- Leme, F.O.; Lucas Carvalho Lima, L.; Papai, P.; Akiba, N.; Lemos Batista, B.; Gaubeur, I. A novel vortex-assisted dispersive liquid-phase microextraction procedure for preconcentration of europium, gadolinium, lanthanum, neodymium, and ytterbium from water combined with ICP techniques. J. Anal. Atom. Spectrom. 2018, 33, 2000. [Google Scholar] [CrossRef]
Surface | θ(°) | Surface Energies (mJ·m−2) | ||||||
---|---|---|---|---|---|---|---|---|
Water | Formamide | Diiodomethane | γs | γd | γp | γ+ | γ− | |
Gold | 55.0 | 33.0 | 18.0 | 52.0 | 47.4 | 4.6 | 0.3 | 17.8 |
Gold/bis-N-MPyC | 7.8 | 16.7 | 15.7 | 52.8 | 48.0 | 4.8 | 0.1 | 58.2 |
X | [X] (mol L−1) | 0 | 10−10 | 10−9 | 10−8 | 10−7 | 10−6 | 10−5 |
---|---|---|---|---|---|---|---|---|
Gd3+ | Rf (kΩ·cm−2) | 25.59 | 28.21 | 31.07 | 33.50 | 35.60 | 36.80 | 39.20 |
CPEf (μF) | 28.33 | 26.15 | 26.49 | 22.42 | 21.44 | 20.89 | 19.87 | |
nf | 0.85 | 0.85 | 0.86 | 0.86 | 0.86 | 0.87 | 0.87 | |
Rp (kΩ·cm−2) | 19.62 | 19.71 | 22.20 | 22.97 | 24.28 | 26.20 | 27.15 | |
CPEdl (μF) | 8.27 | 7.76 | 7.44 | 7.38 | 7.16 | 7.04 | 6.92 | |
ndl | 0.98 | 0.98 | 0.98 | 0.99 | 0.99 | 0.98 | 0.98 | |
Eu3+ | Rf (kΩ·cm−2) | 18.25 | 19.74 | 21.31 | 23.41 | 24.95 | 26.60 | 29.61 |
CPEf (μF) | 38.61 | 35.17 | 32.50 | 31.22 | 29.25 | 27.68 | 25.99 | |
nf | 0.86 | 0.88 | 0.88 | 0.88 | 0.89 | 0.88 | 0.88 | |
Rp (kΩ·cm−2) | 16.49 | 17.20 | 17.48 | 17.91 | 17.74 | 17.75 | 18.53 | |
CPEdl (μF) | 10.66 | 10.83 | 10.97 | 10.81 | 11.15 | 10.84 | 10.64 | |
ndl | 0.99 | 0.97 | 0.98 | 0.98 | 0.99 | 0.99 | 0.99 | |
Tb3+ | Rf (kΩ·cm−2) | 22.32 | 22.63 | 24.16 | 27.65 | 30.06 | 28.84 | 29.08 |
CPEf (μF) | 29.84 | 28.80 | 28.39 | 23.24 | 23.29 | 23.71 | 23.12 | |
nf | 0.86 | 0.86 | 0.86 | 0.88 | 0.87 | 0.88 | 0.88 | |
Rp (kΩ·cm−2) | 18.65 | 18.59 | 18.90 | 17.52 | 17.99 | 19.90 | 19.30 | |
CPEdl (μF) | 9.56 | 10.10 | 9.91 | 10.40 | 9.95 | 9.82 | 9.73 | |
ndl | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | |
Dy3+ | Rf (kΩ·cm−2) | 19.80 | 20.92 | 21.77 | 24.05 | 26.31 | 25.55 | 26.60 |
CPEf (μF) | 29.18 | 27.48 | 27.87 | 27.01 | 26.00 | 24.47 | 24.03 | |
nf | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.88 | 0.89 | |
Rp (kΩ·cm−2) | 16.45 | 16.86 | 17.51 | 18.00 | 18.18 | 18.22 | 18.76 | |
CPEdl (μF) | 11.98 | 11.94 | 11.51 | 11.21 | 10.85 | 11.39 | 11.15 | |
ndl | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
Lanthanide | Linearity Range (mol L−1) | ∆Rp/Rp0 (|S|/decade) × 100 |
---|---|---|
Gd3+ | 10−10–10−5 | 7.3 |
Eu3+ | 10−10–10−5 | ≤1 |
Dy3+ | 10−10–10−5 | ≤1 |
Tb3+ | 10−10–10−5 | ≤1 |
Electrochemical Technique | Recognition Part | Dynamic Range | Detection Limit | Reference |
---|---|---|---|---|
DP Voltammetry | MIP based on vinylpyridine | 60 nM–48 µM | 4.5 nM | [33] |
Impedancemetry | Terpyridine ligands | 10 nM–1 mM | 3.5 nM | [34] |
Optode | Bis(thiophenal) pyridine-2,6-diamine | 50 nM–2.5 µM | 9.3 nM | [46] |
Optode | (Z)-N′-((Pyridine-2-yl) methylene) thiophene-2-carbohydrazide | 50 nM–20 µM | 10 nM | [47] |
ICP-MS | 5 ng/L–100 ng/L | 3 ng/L; 19 pM | [48] | |
Impedancemetry | Methylpyridine cyclam | 0.1 nM–10 µM | 35 pM | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Touzi, H.; Chevalier, Y.; Martin, M.; Ben Ouada, H.; Jaffrezic-Renault, N. Detection of Gadolinium with an Impedimetric Platform Based on Gold Electrodes Functionalized by 2-Methylpyridine-Substituted Cyclam. Sensors 2021, 21, 1658. https://doi.org/10.3390/s21051658
Touzi H, Chevalier Y, Martin M, Ben Ouada H, Jaffrezic-Renault N. Detection of Gadolinium with an Impedimetric Platform Based on Gold Electrodes Functionalized by 2-Methylpyridine-Substituted Cyclam. Sensors. 2021; 21(5):1658. https://doi.org/10.3390/s21051658
Chicago/Turabian StyleTouzi, Hassen, Yves Chevalier, Marie Martin, Hafedh Ben Ouada, and Nicole Jaffrezic-Renault. 2021. "Detection of Gadolinium with an Impedimetric Platform Based on Gold Electrodes Functionalized by 2-Methylpyridine-Substituted Cyclam" Sensors 21, no. 5: 1658. https://doi.org/10.3390/s21051658
APA StyleTouzi, H., Chevalier, Y., Martin, M., Ben Ouada, H., & Jaffrezic-Renault, N. (2021). Detection of Gadolinium with an Impedimetric Platform Based on Gold Electrodes Functionalized by 2-Methylpyridine-Substituted Cyclam. Sensors, 21(5), 1658. https://doi.org/10.3390/s21051658