Noise-Resilient Acoustic Low Energy Beacon for Proximity-Based Indoor Positioning Systems
Abstract
:1. Introduction
2. Related Works
3. System Description
3.1. Transmitter Module
3.2. Signal Coding
3.3. Receiver Module and Signal Analysis
4. Experimental Results
4.1. System Characterization
4.1.1. Noise Tolerance
4.1.2. Sensing Coverage
4.2. Field Evaluation
4.3. Energy Efficiency
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Mautz, R. Indoor Positioning Technologies. Ph.D. Thesis, ETH Zurich, Department of Civil, Environmental and Geomatic Engineering, Institute of Geodesy and Photogrammetry, Zürich, Switzerland, 2012. [Google Scholar] [CrossRef]
- Brena, R.F.; García-Vázquez, J.P.; Galván-Tejada, C.E.; Muñoz-Rodriguez, D.; Vargas-Rosales, C.; Fangmeyer, J. Evolution of Indoor Positioning Technologies: A Survey. J. Sens. 2017, 2017. [Google Scholar] [CrossRef]
- Mendoza-Silva, G.M.; Torres-Sospedra, J.; Huerta, J. A Meta-Review of Indoor Positioning Systems. Sensors 2019, 19, 4507. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Chan, S.G. Wi-Fi Fingerprint-Based Indoor Positioning: Recent Advances and Comparisons. IEEE Commun. Surv. Tutorials 2016, 18, 466–490. [Google Scholar] [CrossRef]
- Torres-Sospedra, J.; Richter, P.; Moreira, A.; Mendoza-Silva, G.; Lohan, E.S.; Trilles, S.; Matey-Sanz, M.; Huerta, J. A comprehensive and reproducible comparison of clustering and optimization rules in wi-fi fingerprinting. IEEE Trans. Mob. Comput. 2020. [Google Scholar] [CrossRef]
- Faragher, R.; Harle, R. Location Fingerprinting With Bluetooth Low Energy Beacons. IEEE J. Sel. Areas Commun. 2015, 33, 2418–2428. [Google Scholar] [CrossRef]
- Aranda, F.J.; Parralejo, F.; Álvarez, F.J.; Torres-Sospedra, J. Multi-Slot BLE Raw Database for Accurate Positioning in Mixed Indoor/Outdoor Environments. DATA 2020, 5, 67. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Han, S. 3D Visible Light Indoor Positioning by Bokeh Based Optical Intensity Measurement in Smartphone Camera. IEEE Access 2019, 7, 91399–91406. [Google Scholar] [CrossRef]
- Amsters, R.; Holm, D.; Joly, J.; Demeester, E.; Stevens, N.; Slaets, P. Visible Light Positioning Using Bayesian Filters. J. Light. Technol. 2020, 38, 5925–5936. [Google Scholar] [CrossRef]
- Murano, S.; Pérez-Rubio, C.; Gualda, D.; Álvarez, F.J.; Aguilera, T.; Marziani, C.D. Evaluation of Zadoff–Chu, Kasami, and Chirp-Based Encoding Schemes for Acoustic Local Positioning Systems. IEEE Trans. Instrum. Meas. 2020, 69, 5356–5368. [Google Scholar] [CrossRef]
- Aparicio, J.; Aguilera, T.; Álvarez, F.J. Robust Airborne Ultrasonic Positioning of Moving Targets in Weak Signal Coverage Areas. IEEE Sens. J. 2020, 20, 13119–13130. [Google Scholar] [CrossRef]
- Basiri, A.; Lohan, E.S.; Moore, T.; Winstanley, A.; Peltola, P.; Hill, C.; Amirian, P.; Figueiredo e Silva, P. Indoor location based services challenges, requirements and usability of current solutions. Comput. Sci. Rev. 2017, 24, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ni, L.M.; Liu, Y.; Lau, Y.C.; Patil, A.P. LANDMARC: Indoor location sensing using active RFID. In Proceedings of the First IEEE International Conference on Pervasive Computing and Communications (PerCom 2003), Fort Worth, TX, USA, 23–26 March 2003; pp. 407–415. [Google Scholar] [CrossRef]
- Montaser, A.; Moselhi, O. RFID indoor location identification for construction projects. Autom. Constr. 2014, 39, 167–179. [Google Scholar] [CrossRef]
- Ozdenizci, B.; Ok, K.; Coskun, V.; Aydin, M.N. Development of an Indoor Navigation System Using NFC Technology. In Proceedings of the 2011 Fourth International Conference on Information and Computing, Phuket Island, Thailand, 25–27 April 2011; pp. 11–14. [Google Scholar] [CrossRef]
- Goronzy, G.; Pelka, M.; Hellbrück, H. QRPos: Indoor positioning system for self-balancing robots based on QR codes. In Proceedings of the 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain, 4–7 October 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Chawathe, S.S. Low-latency indoor localization using bluetooth beacons. In Proceedings of the 2009 12th International IEEE Conference on Intelligent Transportation Systems, St. Louis, MO, USA, 4–7 October 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–7. [Google Scholar] [CrossRef]
- Fazio, M.; Buzachis, A.; Galletta, A.; Celesti, A.; Villari, M. A proximity-based indoor navigation system tackling the COVID-19 social distancing measures. In Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC), Rennes, France, 8–10 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Kouyoumdjieva, S.T.; Karlsson, G. Experimental Evaluation of Precision of a Proximity-based Indoor Positioning System. In Proceedings of the 2019 15th Annual Conference on Wireless On-demand Network Systems and Services (WONS), Wengen, Switzerland, 22–24 January 2019; pp. 130–137. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishnan, M.; Misra, A.; Balan, R.K.; Lee, Y. Smartphones and BLE Services: Empirical Insights. In Proceedings of the 2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor Systems, Dallas, TX, USA, 19–22 October 2015; pp. 226–234. [Google Scholar] [CrossRef]
- Cho, K.; Park, W.; Hong, M.; Park, G.; Cho, W.; Seo, J.; Han, K. Analysis of Latency Performance of Bluetooth Low Energy (BLE) Networks. Sensors 2015, 15, 59–78. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, F.J. Fundamentals of Airborne Acoustic Positioning Systems. In Geographical and Fingerprinting Data to Create Systems for Indoor Positioning and Indoor/Outdoor Navigation; Elsevier AP: Cambridge, MA, USA, 2019; pp. 335–351. [Google Scholar] [CrossRef]
- Boucheron, R. Over-sampling improvement for acoustic triangulation using Barker code audio signals. In Proceedings of the 173rd Meeting of Acoustical Society of America and 8th Forum Acusticum, Boston, MA, USA, 25–29 June 2017; Volume 30, pp. 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ureña, J.; Hernández, Á.; García, J.J.; Villadangos, J.M.; Carmen Pérez, M.; Gualda, D.; Álvarez, F.J.; Aguilera, T. Acoustic Local Positioning With Encoded Emission Beacons. Proc. IEEE 2018, 106, 1042–1062. [Google Scholar] [CrossRef]
- Paredes, J.A.; Aguilera, T.; Álvarez, F.J.; Lozano, J.; Morera, J. Analysis of Doppler Effect on the Pulse Compression of Different Codes Emitted by an Ultrasonic LPS. Sensors 2011, 11, 10765–10784. [Google Scholar] [CrossRef]
- Aguilera, T.; Álvarez, F.J.; Paredes, J.A.; Moreno, J.A. Doppler compensation algorithm for chirp-based acoustic local positioning systems. Digit. Signal Process. 2020, 100, 102704. [Google Scholar] [CrossRef]
- Lin, H.; Liu, G.; Li, F.; Zuo, Y. Where to go? Predicting next location in IoT environment. Front. Comput. Sci. 2021, 15. [Google Scholar] [CrossRef]
- Edwan, E.; Bourimi, M.; Joram, N.; Al-Qudsi, B.; Ellinger, F. NFC/INS integrated navigation system: The promising combination for pedestrians’ indoor navigation. In Proceedings of the 2014 International Symposium on Fundamentals of Electrical Engineering (ISFEE), Bucharest, Romania, 28–29 November 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Pecchioli, L.; Pucci, M.; Mohamed, F.; Mazzei, B. Browsing in the virtual museum of the sarcophagi in the Basilica of St.Silvestro at the Catacombs of Priscilla in Rome. In Proceedings of the 2012 18th International Conference on Virtual Systems and Multimedia, Milan, Italy, 2–5 September 2012; pp. 413–420. [Google Scholar] [CrossRef]
- Al-Saedi, S.B.; Azim, M.M.A. Radio Frequency Near Communication (RFNC) Technology: An Integrated RFID-NFC System for Objects’ Localization. In Proceedings of the 2017 9th IEEE-GCC Conference and Exhibition (GCCCE), Manama, Bahrain, 8–11 May 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Tesoriero, R.; Tebar, R.; Gallud, J.; Lozano, M.; Penichet, V. Improving location awareness in indoor spaces using RFID technology. Expert Syst. Appl. 2010, 37, 894–898. [Google Scholar] [CrossRef]
- Rahim, M.; Rahman, M.; Rahman, M.; Asyhari, A.T. andBhuiyan, M.; Ramasamy, D. Evolution of IoT-enabled connectivity and applications in automotive industry: A review. Veh. Commun. 2021, 27. [Google Scholar] [CrossRef]
- Amutha, B.; Nanmaran, K. Development of a ZigBee based virtual eye for visually impaired persons. In Proceedings of the 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, Korea, 27–30 October 2014; pp. 564–574. [Google Scholar] [CrossRef]
- Xiao, L.; Yan, Q.; Lou, W.; Chen, G.; Hou, Y.T. Proximity-Based Security Techniques for Mobile Users in Wireless Networks. IEEE Trans. Inf. Forensics Secur. 2013, 8, 2089–2100. [Google Scholar] [CrossRef] [Green Version]
- Mackey, A.; Spachos, P.; Plataniotis, K.N. Smart Parking System Based on Bluetooth Low Energy Beacons With Particle Filtering. IEEE Syst. J. 2020, 14, 3371–3382. [Google Scholar] [CrossRef] [Green Version]
- Spachos, P.; Plataniotis, K.N. BLE Beacons for Indoor Positioning at an Interactive IoT-Based Smart Museum. IEEE Syst. J. 2020, 14, 3483–3493. [Google Scholar] [CrossRef] [Green Version]
- Ceron, J.D.; Lopez, D.M.; Ramirez, G.A. A mobile system for sedentary behaviors classification based on accelerometer and location data. Comput. Ind. 2017, 92–93, 25–31. [Google Scholar] [CrossRef]
- Xie, C.; Guan, W.; Wu, Y.; Fang, L.; Cai, Y. The LED-ID Detection and Recognition Method Based on Visible Light Positioning Using Proximity Method. IEEE Photonics J. 2018, 10, 1–16. [Google Scholar] [CrossRef]
- Kim, M.; Suh, T. A Low-Cost Surveillance and Information System for Museum Using Visible Light Communication. IEEE Sens. J. 2019, 19, 1533–1541. [Google Scholar] [CrossRef]
- Shahid, B.; Kannan, A.A.; Lovell, N.H.; Redmond, S.J. Ultrasound user-identification for wireless sensor networks. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 5756–5759. [Google Scholar] [CrossRef]
- Rossi, M.; Seiter, J.; Amft, O.; Buchmeier, S.; Tröster, G. RoomSense: An Indoor Positioning System for Smartphones Using Active Sound Probing. In Proceedings of the 4th Augmented Human International Conference; AH ’13; Association for Computing Machinery: New York, NY, USA, 2013; pp. 89–95. [Google Scholar] [CrossRef]
- Jia, R.; Jin, M.; Chen, Z.; Spanos, C.J. SoundLoc: Accurate room-level indoor localization using acoustic signatures. In Proceedings of the 2015 IEEE International Conference on Automation Science and Engineering (CASE), Gothenburg, Sweden, 24–28 August 2015; IEEE: Piscataway, CA, USA, 2015; pp. 186–193. [Google Scholar] [CrossRef]
- Hammoud, A.; Deriaz, M.; Konstantas, D. Robust ultrasound-based room-level localization system using COTS components. In Proceedings of the 2016 Fourth International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services (UPINLBS), Shanghai, China, 2–4 November 2016; pp. 11–19. [Google Scholar] [CrossRef]
- Minkoff, J. Signals, Noise and Active Sensors: Radar, Sonar, Laser Radar; John Wiley & Sons Inc.: New York, NY, USA, 1992; ISBN 978-0-47154572-9. [Google Scholar]
- Álvarez, F.J.; Aguilera, T.; López-Valcarce, R. CDMA-based acoustic local positioning system for portable devices with multipath cancellation. Digit. Signal Process. 2017, 62, 38–51. [Google Scholar] [CrossRef]
- STM32 Nucleo-32 Development Board with STM32L432KC MCU. Available online: https://www.st.com/en/evaluation-tools/nucleo-l432kc.html (accessed on 19 February 2020).
- Adafruit. Class D Audio Amplifier 2.5 W. Available online: https://cdn-shop.adafruit.com/datasheets/PAM8302A.pdf (accessed on 19 February 2020).
- MH-ET LIVE. Pasive Infrared Sensor. Available online: https://forum.mhetlive.com/topic/46/mh-et-live-sr-602-pyroelectric-human-infrared-sensor-module (accessed on 19 February 2020).
- RS Amidata. Ultrasonic Transducer. Available online: https://docs.rs-online.com/c0bf/0900766b816c0809.pdf (accessed on 19 February 2020).
- GRAS 40BE 1/4”. Ultrasonic Microphone. Available online: https://www.gras.dk/products/measurement-microphone-cartridge/prepolarized-cartridges-0-volt/product/158-40be (accessed on 19 February 2020).
- GRAS 12AK. 1-Channel Power Module. Available online: https://www.gras.dk/products/power-module/product/225-12ak (accessed on 19 February 2020).
- Agilent 33522A. Arbitrary Waveform Generator. Available online: https://www.keysight.com/en/pd-1871286-pn-33522A/function-arbitrary-waveform-generator-30-mhz?cc=US&lc=eng (accessed on 19 February 2020).
- Klauder, J.R.; Price, A.C.; Darlington, S.; Albersheim, W.J. The theory and design of chirp radars. Bell Syst. Tech. J. 1960, 39, 745–808. [Google Scholar] [CrossRef]
- AudioRecord Public Class. Android. Available online: https://developer.android.com/reference/android/media/AudioRecord (accessed on 19 February 2020).
- Piotr Wendykier. jTransforms Open Source Library. Available online: https://sites.google.com/site/piotrwendykier/software/jtransforms (accessed on 19 February 2020).
- Allen, J.B.; Berkley, D.A. Image method for efficiently simulating small-room acoustics. J. Acoust. Soc. Am. 1979, 65, 943–950. [Google Scholar] [CrossRef]
- Tektronix TDS 2004C. Oscilloscope. Available online: https://uk.tek.com/oscilloscope/tds2000-digital-storage-oscilloscope (accessed on 19 February 2020).
- Rangefinder GLM 80. Bosch. Available online: https://www.bosch-professional.com/gb/en/products/glm-80-0601072370 (accessed on 19 February 2020).
- Microcontrollers Energy Consumption. STM32L4. Available online: https://www.st.com/resource/en/application_note/dm00216518-optimizing-power-and-performance-with-stm32l4-series-microcontrollers-stmicroelectronics.pdf (accessed on 19 February 2020).
- C547B NPN Transistor. Fairchild Semiconductor. Available online: https://docs.rs-online.com/4ff8/0900766b812cf5d7.pdf (accessed on 19 February 2020).
- iBKS Bluetooth Low Energy Beacon. Accent Systems. Available online: https://accent-systems.com/product/ibks-plus/?v=04c19fa1e772 (accessed on 19 February 2020).
- nRF51822. Nordic Semiconductor. Available online: https://www.nordicsemi.com/-/media/Software-and-other-downloads/Product-Briefs/nRF51822-product-brief.pdf?la=en&hash=A4B5A9AA6675A58F7B779AF81C860CD69EB867FD (accessed on 19 February 2020).
Mi 10 | P30 | Tab S6 | Note 8 | Mi A3 | BQ | J5 | Tab S5e | P9000 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Beacon | tb (s) | rb (m) | tb (s) | rb (m) | tb (s) | rb (m) | tb (s) | rb (m) | tb (s) | rb (m) | tb (s) | rb (m) | tb (s) | rb (m) | tb (s) | rb (m) | tb (s) | rb (m) |
1 | 1.072 | 0.682 | 1.648 | 0.761 | 1.251 | 0.423 | 1.225 | 0.951 | 1.436 | 1.218 | 1.153 | 0.462 | 3.519 | 0.425 | 1.716 | 0.460 | 2.901 | 0.383 |
2 | 1.065 | 1.471 | 2.079 | 0.625 | 1.276 | 1.393 | 1.573 | 0.633 | 1.822 | 1.955 | 1.233 | 1.181 | 1.996 | 0.713 | 2.215 | 1.625 | 1.936 | 0.362 |
3 | 1.059 | 0.773 | 4.57 | 1.225 | 1.471 | 1.411 | 3.121 | 1.152 | 1.089 | 0.720 | 1.377 | 0.925 | 4.109 | 0.546 | 3.124 | 0.860 | 1.909 | 0.457 |
4 | 1.039 | 1.290 | 1.586 | 1.372 | 1.694 | 1.124 | 1.039 | 0.706 | 3.594 | 3.080 | 1.183 | 1.04 | 5.980 | 1.080 | 3.168 | 1.120 | 1.276 | 0.410 |
5 | 1.106 | 1.387 | 3.605 | 0.847 | 1.848 | 1.292 | 1.039 | 1.135 | 1.117 | 0.973 | 1.240 | 0.954 | 1.987 | 0.937 | 2.745 | 0.780 | 4.017 | 0.484 |
6 | 1.061 | 1.035 | 1.274 | 1.268 | 1.273 | 1.520 | 1.580 | 1.385 | 3.141 | 1.900 | 1.173 | 1.103 | 4.804 | 0.711 | 6.512 | 1.184 | 8.754 | 0.356 |
7 | 1.145 | 0.970 | 1.896 | 1.281 | 1.201 | 1.680 | 1.262 | 0.650 | 1.132 | 2.010 | 1.697 | 1.03 | 1.805 | 0.626 | 1.251 | 1.340 | 6.268 | 0.314 |
8 | 1.067 | 1.547 | 1.451 | 1.004 | 1.239 | 0.715 | 1.085 | 0.594 | 2.381 | 1.580 | 2.554 | 0.841 | 2.054 | 0.598 | 6.735 | 0.889 | 5.900 | 0.257 |
9 | 1.208 | 1.239 | 1.481 | 1.190 | 1.049 | 1.134 | 1.820 | 0.670 | 1.144 | 2.678 | 1.230 | 1.129 | 1.803 | 1.559 | 1.533 | 0.682 | 8.571 | 0.332 |
10 | 1.070 | 0.648 | 2.077 | 0.948 | 1.158 | 0.857 | 1.104 | 0.948 | 4.179 | 1.216 | 1.218 | 0.455 | 5.126 | 0.706 | 1.144 | 0.675 | 3.725 | 0.210 |
11 | 1.832 | 0.922 | 1.250 | 1.503 | 1.086 | 1.524 | 1.327 | 1.789 | 1.191 | 1.864 | 1.787 | 0.787 | 5.022 | 0.705 | 1.137 | 1.075 | 6.490 | 0.301 |
12 | 1.701 | 1.023 | 2.227 | 0.863 | 1.346 | 0.991 | 1.085 | 1.473 | 1.132 | 2.820 | 1.214 | 0.972 | 1.522 | 2.131 | 2.162 | 1.21 | 1.933 | 0.330 |
13 | 1.036 | 0.644 | 1.091 | 1.402 | 1.223 | 0.803 | 1.133 | 1.362 | 1.122 | 1.616 | 1.238 | 1.059 | 1.411 | 0.624 | 1.111 | 0.923 | 1.667 | 0.253 |
14 | 1.083 | 1.419 | 1.084 | 0.977 | 1.196 | 0.690 | 1.119 | 0.567 | 1.061 | 1.082 | 2.192 | 1.017 | 6.109 | 0.559 | 1.137 | 0.270 | 1.629 | 0.334 |
15 | 1.079 | 0.553 | 2.586 | 1.351 | 1.078 | 0.705 | 1.075 | 1.229 | 1.185 | 1.627 | 1.238 | 0.589 | 6.059 | 0.421 | 1.248 | 0.592 | 1.872 | 0.292 |
16 | 1.071 | 1.220 | 2.762 | 1.636 | 1.139 | 0.403 | 3.124 | 2.819 | 1.168 | 1.905 | 1.163 | 1.22 | 4.003 | 1.047 | 1.132 | 0.463 | 2.061 | 0.287 |
17 | 1.048 | 0.524 | 1.580 | 1.413 | 1.226 | 0.966 | 1.105 | 1.742 | 1.164 | 1.484 | 1.188 | 0.478 | 5.113 | 0.453 | 1.070 | 0.546 | 3.005 | 0.261 |
18 | 1.071 | 1.656 | 2.071 | 1.647 | 1.063 | 1.074 | 1.048 | 1.546 | 2.311 | 2.072 | 1.326 | 1.148 | 2.032 | 0.274 | 1.227 | 0.954 | 1.701 | 0.466 |
Mean | 1.156 | 1.053 | 2.018 | 1.180 | 1.231 | 1.038 | 1.437 | 1.177 | 1.742 | 1.762 | 1.411 | 0.910 | 3.420 | 0.678 | 2.242 | 0.869 | 3.660 | 0.335 |
0.226 | 0.363 | 0.908 | 0.301 | 0.283 | 0.378 | 0.651 | 0.566 | 0.976 | 0.635 | 0.395 | 0.127 | 1.743 | 0.317 | 1.742 | 0.349 | 2.451 | 0.077 |
Mi 10 | P30 | Tab S6 | Note 8 | Mi A3 | BQ | J5 | Tab S5e | P9000 | |
---|---|---|---|---|---|---|---|---|---|
(s) | 0.387 | 0.508 | 0.499 | 0.541 | 0.814 | 0.658 | 0.951 | 0.659 | 1.105 |
(s) | 0.018 | 0.022 | 0.047 | 0.050 | 0.045 | 0.048 | 0.071 | 0.079 | 0.214 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilera, T.; Aranda, F.J.; Parralejo, F.; Gutiérrez, J.D.; Moreno, J.A.; Álvarez, F.J. Noise-Resilient Acoustic Low Energy Beacon for Proximity-Based Indoor Positioning Systems. Sensors 2021, 21, 1703. https://doi.org/10.3390/s21051703
Aguilera T, Aranda FJ, Parralejo F, Gutiérrez JD, Moreno JA, Álvarez FJ. Noise-Resilient Acoustic Low Energy Beacon for Proximity-Based Indoor Positioning Systems. Sensors. 2021; 21(5):1703. https://doi.org/10.3390/s21051703
Chicago/Turabian StyleAguilera, Teodoro, Fernando J. Aranda, Felipe Parralejo, Juan D. Gutiérrez, José A. Moreno, and Fernando J. Álvarez. 2021. "Noise-Resilient Acoustic Low Energy Beacon for Proximity-Based Indoor Positioning Systems" Sensors 21, no. 5: 1703. https://doi.org/10.3390/s21051703
APA StyleAguilera, T., Aranda, F. J., Parralejo, F., Gutiérrez, J. D., Moreno, J. A., & Álvarez, F. J. (2021). Noise-Resilient Acoustic Low Energy Beacon for Proximity-Based Indoor Positioning Systems. Sensors, 21(5), 1703. https://doi.org/10.3390/s21051703