Biomechanical Analysis in Five Bar Linkage Prototype Machine of Gait Training and Rehabilitation by IMU Sensor and Electromyography
Abstract
:1. Introduction
2. Methods
2.1. Development of MGTR
2.1.1. Mechanical Design
2.1.2. Implementation of Gait Trajectory
2.2. Biomechanical Analysis
2.2.1. Subjects
2.2.2. Experimental Protocol
2.2.3. Measuring Equipment
2.2.4. Data Processing
3. Results
3.1. Results of Kinematics
3.2. Results of Electromyography
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kelly, P.W.; Carolynn, P. Pilot study of Lokomat versus manual-assisted treadmill training for locomotor recovery post-stroke. J. Neuroeng. Rehabil. 2009, 6, 18. [Google Scholar]
- Sullivan, K.J.; Knowlton, B.J.; Dobkin, B.H. Step training with body weight support: Effect of treadmill speed and practice paradigms on poststroke locomotor recovery. Arch. Phys. Med. Rehabil. 2002, 83, 683–691. [Google Scholar] [CrossRef]
- Murphy, T.H.; Corbett, D. Plasticity during stroke recovery: From synapse to behavior. Nat. Rev. Neurosci. 2009, 10, 861–872. [Google Scholar] [CrossRef]
- Jezernik, S.; Colombo, G.; Keller, T.; Frueh, H.; Morari, M. Robotic orthosis Lokomat: A rehabilitation and research tool. Neuromodulation 2008, 2, 108–115. [Google Scholar] [CrossRef]
- Hidler, J.; Wisman, W.; Neckel, N. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis. Clin. Biomech. 2008, 23, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Mehrholz, J.; Pohl, M. Electromechanical-assisted gait training after stroke: A systematic review comparing end-effector and exoskeleton devices. J. Rehabil. Med. 2012, 44, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Mao, Y.; Lo, Y.L.; Xu, G.; Li, L.S.; Huang, D. Reduced knee hyperextension after wearing a robotic knee orthosis during gait training--a case study. Biomed. Mater. Eng. 2015, 26, S381–S388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.H.; Shin, D.H.; Park, T.S.; Jeong, C.P.; Moon, J.I.; An, J. Kinematic Design Consideration Based on Actuator Placement of Five-Bar Planar Robot for Arm Rehabilitation. Key Eng. Mater. 2014, 625, 638–643. [Google Scholar] [CrossRef]
- Seel, T.; Raisch, J.; Shauer, T. IMU-Based Joint Angle Measurement for Gait Analysis. Sensors 2014, 14, 6891–6909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nieves, S.P. Postural Fatigue of the Shoulder: Relationships between Maximum Endurance, Subjective Perception and Electromyographic Responses. Ph.D. Thesis, The University of Nottingham, Nottingham, UK, 1994. [Google Scholar]
- Shiavi, R.; Frigo, C.; Pedotti, A. Electromyographic signals during gait: Criteria for envelope filtering and number of strides. Med. Biol. Eng. Comput. 1998, 36, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Trojaniello, D.; Cereatti, A.; Pelosin, E.; Avanzino, L.; Mirelman, A.; Hausdorff, J.M.; Croce, U.D. Estimation of step-by-step spatio-temporal parameters of normal and impaired gait using shank-mounted magneto-inertial sensors: Application to elderly, hemiparetic, parkinsonian and choreic gait. J. Neuroeng. Rehabil. 2014, 11, 152. [Google Scholar] [CrossRef] [Green Version]
- Bakhshi, S.; Mahoor, M.H.; Davidson, B.S. Development of a body joint angle measurement system using IMU sensors. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 6923–6926. [Google Scholar] [CrossRef]
- Rainoldi, A.; Bullock-Saxton, J.E.; Cavarretta, F.; Hogan, N. Repeatability of maximal voluntary force and of surface EMG variables during voluntary isometric contraction of quadriceps muscles in healthy subjects. J. Electromyogr. Kinesiol. 2001, 11, 425–438. [Google Scholar] [CrossRef]
- Choi, J.H.; Seo, T.W.; Lee, J.W. Singularity analysis of a planar parallel mechanism with revolute joints based on a geometric approach. J. Precis. Eng. Manuf. 2013, 14, 1369–1375. [Google Scholar] [CrossRef]
- Lin, L.F.; Huang, S.W.; Chang, K.H.; Ouyang, J.H.; Liou, T.H.; Lin, Y.N. A novel Robotic Gait Training System (RGTS) may facilitate functional recovery after stroke: A feasibility and safety study. NeuroRehabilitation 2017, 41, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Maffiuletti, N.A.; Bizzini, M.; Desbrosses, K.; Babault, N.; Munzinger, U. Reliability of knee extension and flexion measurements using the Con- Trex isokinetic dynamometer. Clin. Physiol. Funct. Imaging 2007, 27, 346–353. [Google Scholar] [CrossRef]
- Weir, J.P.; Evans, S.A.; Housh, M.L. The effect of extraneous movements on peak torque and constant joint angle torque-velocity curves. J. Orthop. Sports Phys. Ther. 1996, 23, 302–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armand, S.; Bonnefoy-Mazure, A.; Hoffmeyer, P.; De Coulon, G. Analyse quantifiée de la marche: Mode d’emploi [Clinical gait analysis: User guide]. Rev. Med. Suisse 2015, 14, 1916–1920. [Google Scholar]
- Hsiao, H.; Knarr, B.A.; Higginson, J.S.; Binder-Macleod, S.A. The relative contribution of ankle moment and trailing limb angle to propulsive force during gait. Hum. Mov. Sci. 2015, 39, 212–221. [Google Scholar] [CrossRef] [Green Version]
- Moon, S.B.; Ji, Y.H.; Jang, H.Y.; Hwang, S.H.; Shin, D.B.; Lee, S.C.; Han, J.S.; Han, C.S.; Lee, Y.G.; Jang, S.H.; et al. Gait analysis of hemiplegic patients in ambulatory rehabilitation training using a wearable lower limb robot: A pilot study. Int. J. Precis. Eng. Manuf. 2017, 18, 1773–1781. [Google Scholar] [CrossRef]
- Mehrholz, J.; Elsner, B.; Werner, C.; Kugler, J.; Pohl, M. Electromechanical-Assisted Training for Walking after Stroke:Updated Evidence. Stroke 2013, 44, 127–128. [Google Scholar] [CrossRef] [Green Version]
- Schicketmueller, A.; Lamprecht, J.; Hofmann, M.; Sailer, M.; Rose, G. Gait Event Detection for Stroke Patients during Robot-Assisted Gait Training. Sensors 2020, 20, 3399. [Google Scholar] [CrossRef]
- Coviello, G.; Avitabile, G.; Florio, A. A Synchronized Multi-Unit Wireless Platform for Long-Term Activity Monitoring. Electronics 2020, 9, 1118. [Google Scholar] [CrossRef]
Position x[m] | 0.0316 | 0.2482 | 0.1426 | 0.0561 | −0.0264 | 0.0092 |
Position y[m] | 0.1341 | 0.0011 | −0.0549 | −0.0280 | 0.0033 | 0.0043 |
Position x[m] | −0.0082 | 0.0054 | −0.0040 | 0.0007 | −0.0033 | 4.174 |
Position y[m] | 25.54 ± 3.25 | 177.11 ± 5.88 | 81.67 ± 9.45 | 0.0088 | −0.0002 | 4.174 |
Min. Angle | Max. Angle | RoM | ||
---|---|---|---|---|
Hip | Gait | −14.56 ± 7.50 | 54.40 ± 12.59 | 68.97 ± 14.65 |
MGTR | 24.02 ± 3.16 | 43.32 ± 5.74 | 19.31 ± 3.11 | |
p | 0.00 * | 0.03 * | 0.00 * | |
Knee | Gait | 13.85 ± 6.66 | 93.81 ± 14.31 | 79.96 ± 19.25 |
MGTR | 60.17 ± 3.41 | 102.78 ± 6.90 | 42.61 ± 4.25 | |
p | 0.00 * | N.S | 0.04 * |
Muscles | Max Value (%) | Event of Max (%) | Min Value (%) | Event of Min (%) | Iemg (∑) | |
---|---|---|---|---|---|---|
TA | Gait | 30.03 ± 11.89 | 61.05 ± 35.65 | 6.92 ± 2.67 | 46.06 ± 39.60 | 1600.18 ± 579.66 |
MGTR | 31.93 ± 6.84 | 37.50 ± 22.88 | 7.11 ± 4.01 | 47.75 ± 35.22 | 1647.64 ± 712.75 | |
p | N.S | N.S | N.S | N.S | N.S | |
GM | Gait | 28.08 ± 10.38 | 33.40 ± 2.70 | 3.11 ± 0.77 | 67.20 ± 9.78 | 890.63 ± 210.31 |
MGTR | 21.18 ± 4.39 | 38.33 ± 51.68 | 2.51 ± 0.84 | 63.33 ± 36.50 | 898.39 ± 221.74 | |
p | N.S | N.S | N.S | N.S | N.S | |
RF | Gait | 41.09 ± 26.75 | 50.92 ± 42.07 | 7.05 ± 4.38 | 59.33 ± 17.91 | 1798 ± 1053.62 |
MGTR | 48.25 ± 32.09 | 39.75 ± 42.08 | 8.26 ± 3.70 | 54.63 ± 29.35 | 2211.11 ± 1231.13 | |
p | N.S | N.S | N.S | N.S | N.S | |
BF | Gait | 31.20 ± 18.96 | 61.83 ± 36.98 | 4.83 ± 4.04 | 40.83 ± 16.94 | 1436.70 ± 945.00 |
MGTR | 29.74 ± 19.16 | 41.20 ± 40.01 | 5.84 ± 4.19 | 54.90 ± 23.80 | 1420.32 ± 859.95 | |
p | N.S | N.S | N.S | N.S | N.S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, J.-W.; Kim, H.-S. Biomechanical Analysis in Five Bar Linkage Prototype Machine of Gait Training and Rehabilitation by IMU Sensor and Electromyography. Sensors 2021, 21, 1726. https://doi.org/10.3390/s21051726
Seo J-W, Kim H-S. Biomechanical Analysis in Five Bar Linkage Prototype Machine of Gait Training and Rehabilitation by IMU Sensor and Electromyography. Sensors. 2021; 21(5):1726. https://doi.org/10.3390/s21051726
Chicago/Turabian StyleSeo, Jeong-Woo, and Hyeong-Sic Kim. 2021. "Biomechanical Analysis in Five Bar Linkage Prototype Machine of Gait Training and Rehabilitation by IMU Sensor and Electromyography" Sensors 21, no. 5: 1726. https://doi.org/10.3390/s21051726
APA StyleSeo, J. -W., & Kim, H. -S. (2021). Biomechanical Analysis in Five Bar Linkage Prototype Machine of Gait Training and Rehabilitation by IMU Sensor and Electromyography. Sensors, 21(5), 1726. https://doi.org/10.3390/s21051726