A Cost-Effective Inertial Measurement System for Tracking Movement and Triggering Kinesthetic Feedback in Lower-Limb Prosthesis Users
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Development
2.2. Measurement Validation
2.3. System Integration
2.4. Case Study: Above-Knee Prosthesis User
3. Results
3.1. Movement Sensor Validation
3.2. Case Study: Above-Knee Prosthesis User
4. Discussion
4.1. Technical Validation
4.2. System Performance
4.3. Case Study: Above-Knee Prosthesis User
4.4. Limitations and Future Developments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, Y.C.; Park, C.I.; Kim, D.Y.; Kim, T.S.; Shin, J.C. Statistical analysis of amputations and trends in Korea. Prosthet. Orthot. Int. 1996, 20, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Ziegler-Graham, K.; MacKenzie, E.J.; Ephraim, P.L.; Travison, T.G.; Brookmeyer, R. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 2008, 89, 422–429. [Google Scholar] [CrossRef]
- Sinha, R.; Van Den Heuvel, W.J.; Arokiasamy, P. Factors affecting quality of life in lower limb amputees. Prosthet. Orthot. Int. 2011, 35, 90–96. [Google Scholar] [CrossRef]
- Fite, K.B. Overview of the components used in active and passive lower-limb prosthetic devices. In Full Stride: Advancing the State of the Art in Lower Extremity Gait Systems; Tepe, V., Peterson, C.M., Eds.; Springer: New York City, NY, USA, 2017; pp. 55–74. [Google Scholar]
- Jayakaran, P.; Johnson, G.M.; Sullivan, S.J.; Nitz, J.C. Instrumented measurement of balance and postural control in individuals with lower limb amputation: A critical review. Int. J. Rehabil. Res. 2012, 35, 187–196. [Google Scholar] [CrossRef]
- Clites, T.R.; Carty, M.J.; Ullauri, J.B.; Carney, M.E.; Mooney, L.M.; Duval, J.-F.; Srinivasan, S.S.; Herr, H.M. Proprioception from a neurally controlled lower-extremity prosthesis. Sci. Transl. Med. 2018, 10, e8373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schofield, J.S.; Dawson, M.R.; Carey, J.P.; Hebert, J.S. Characterizing the effects of amplitude, frequency and limb position on vibration induced movement illusions: Implications in sensory-motor rehabilitation. Technol. Health Care 2015, 23, 129–141. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, G.M.; McCloskey, D.I.; Matthews, P.B.C. The contribution of muscle afferents to kinesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain 1972, 95, 705–748. [Google Scholar] [CrossRef] [Green Version]
- Shehata, A.W.; Keri, M.-I.; Gomez, M.; Marasco, P.D.; Vette, A.H.; Hebert, J.S. Skin stretch enhances illusory movement in persons with lower-limb amputation. In Proceedings of the 2019 IEEE-RAS-EMBS International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 1233–1238. [Google Scholar]
- Tidoni, E.; Fusco, G.; Leonardis, D.; Frisoli, A.; Bergamasco, M.; Aglioti, S.M. Illusory movements induced by tendon vibration in right- and left-handed people. Exp. Brain Res. 2015, 233, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Eklund, G. General features of vibration-induced effects on balance. Ups. J. Med. Sci. 1972, 77, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Stillman, B.C. Vibratory motor stimulation: A preliminary report. Aust. J. Physiother. 1970, 16, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Bongiovanni, L.G.; Hagbarth, K.E.; Stjernberg, L. Prolonged muscle vibration reducing motor output in maximal voluntary contractions in man. J. Physiol. 1990, 423, 15–26. [Google Scholar] [CrossRef]
- Marasco, P.D.; Hebert, J.S.; Sensinger, J.W.; Shell, C.E.; Schofield, J.S.; Thumser, Z.C.; Nataraj, R.; Beckler, D.T.; Dawson, M.R.; Blustein, D.H.; et al. Illusory movement perception improves motor control for prosthetic hands. Sci. Transl. Med. 2018, 10, e6990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, F.; Clemente, F.; Cipriani, C. The preload force affects the perception threshold of muscle vibration- induced movement illusions. Exp. Brain Res. 2019, 237, 111–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakhshi, S.; Mahoor, M.H.; Davidson, B.S. Development of a body joint angle measurement system using IMU sensors. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Boston, MA, USA, 30 August–1 September 2011. [Google Scholar]
- Yuan, Q.; Chen, I.M.; Caus, A. Human velocity tracking and localization using 3 IMU sensors. In Proceedings of the 2013 6th IEEE Conference on Robotics, Automation and Mechatronics (RAM), Manila, Philippines, 12–15 November 2013. [Google Scholar]
- Zihajehzadeh, S.; Park, E.J. A novel biomechanical model-aided IMU/UWB fusion for magnetometer-free lower body motion capture. IEEE Trans. Syst. Man. Cybern. Syst. 2016, 47, 927–938. [Google Scholar] [CrossRef]
- Windrich, M.; Grimmer, M.; Christ, O.; Rinderknecht, S.; Beckerle, P. Active lower limb prosthetics: A systematic review of design issues and solutions. Biomed. Eng. Online 2016, 15, 140. [Google Scholar] [CrossRef] [Green Version]
- Grimmer, M.; Seyfarth, A. Mimicking human-like leg function in prosthetic limbs. In Neuro-Robotics: From Brain Machine Interfaces to Rehabilitation Robotics; Artemiadis, P., Ed.; Springer: Dordrecht, The Netherlands, 2014; pp. 105–155. [Google Scholar]
- Schoepp, K.R.; Schofield, J.S.; Home, D.; Dawson, M.R.; Lou, E.; Keri, M.; Marasco, P.D.; Hebert, J.S. Real time monitoring of transtibial elevated vacuum prostheses: A case series on socket air pressure. PLoS ONE 2018, 13, e0202716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, H.; Le, M.; Mai, V. A novel multi-axis compliant prosthetic ankle foot to support the rehabilitation of amputees. In Proceedings of the 3rd International Conference on Green Technology and Sustainable Development (GTSD), Kaohsiung, Taiwan, 24–25 November 2016; pp. 238–243. [Google Scholar]
- Rogers, E.A.; Carney, M.E.; Yeon, S.H.; Clites, T.R.; Solav, D.; Herr, H.M. An ankle-foot prosthesis for rock climbing augmentation. IEEE Trans. Neural Syst. Rehabil Eng. 2021, 29, 41–51. [Google Scholar] [CrossRef]
- Keri, M.-I.; Shehata, A.W.; Boser, Q.A.; Vette, A.H.; Hebert, J.S. Development and verification of a low-cost prosthetic knee motion sensor. In Proceedings of the 2018 IEEE Life Sciences Conference (LSC), Montreal, QC, Canada, 28–30 October 2018. [Google Scholar]
- Robertson, D.; Caldwell, G.; Hamill, J.; Kamen, G.; Whittlesey, S. Three-dimensional kinematics. In Research Methods in Biomechanics; Human Kinetics: Champaign, IL, USA, 2004; Volume 2, pp. 35–52. [Google Scholar]
- Wu, G.; Siegler, S.; Allard, P.; Kirtley, C.; Leardini, A.; Rosenbaum, D.; Whittle, M.; D’Lima, D.D.; Cristofolini, L.; Witte, H.; et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—Part I: Ankle, hip, and spine. J. Biomech. 2002, 35, 543–548. [Google Scholar] [CrossRef]
- Woltring, H.J. Representation and calculation of 3-D joint movement. Hum. Mov. Sci. 1991, 10, 603–616. [Google Scholar] [CrossRef]
- Dawson, M.R.; Fahimi, F.; Carey, J.P. The development of a myoelectric training tool for above-elbow amputees. Open Biomed. Eng. J. 2012, 6, 5–15. [Google Scholar] [CrossRef] [Green Version]
- Glackin, C.; Salge, C.; Greaves, M.; Polani, D.; Slavnic, S.; Ristic-Durrant, D.; Leu, A.; Matjacic, Z. Gait trajectory prediction using Gaussian process ensembles. In Proceedings of the 2014 IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain, 18–20 November 2014. [Google Scholar]
- Farahmand, F.; Rezaeian, T.; Narimani, R.; Dinan, P.H. Kinematic and dynamic analysis of the gait cycle of above-knee amputees. Sci. Iran. 2006, 13, 261–271. [Google Scholar]
- Bae, T.S.; Choi, K.; Hong, D.; Mun, M. Dynamic analysis of above-knee amputee gait. Clin. Biomech. 2007, 22, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A.; Sienko, S.E. Biomechanics of below-knee amputee gait. J. Biomech. 1988, 21, 361–367. [Google Scholar] [CrossRef]
- Su, P.F.; Gard, S.A.; Lipschutz, R.D.; Kuiken, T.A. Differences in gait characteristics between persons with bilateral transtibial amputations, due to peripheral vascular disease and trauma, and able-bodied ambulators. Arch. Phys. Med. Rehabil. 2008, 89, 1386–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Gohary, M.; McNames, J. Human joint angle estimation with inertial sensors and validation with a robot arm. IEEE Trans. Biomed. Eng. 2015, 62, 1759–1767. [Google Scholar] [CrossRef] [PubMed]
- Vette, A.H.; Sanin, E.; Bulsen, A.; Morris, A.; Masani, K.; Popovic, M.R. A portable and automated postural perturbation system for balance assessment, training, and neuromuscular system identification. ASME J. Med. Devices 2008, 2, e041007. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.S.; Boyd, L.A.; Mulroy, S.J.; Bontrager, E.L.; Gronley, J.K.; Perry, J. Segment velocities in normal and transtibial amputees: Prosthetic design implications. IEEE Trans. Rehabil. Eng. 1998, 6, 219–226. [Google Scholar] [CrossRef]
- Joshi, A.; Kale, S.; Chandel, S.; Pal, D.K. Likert scale: Explored and explained. Br. J. Appl. Sci. Technol. 2015, 7, 396–403. [Google Scholar] [CrossRef]
- Makin, T.R.; de Vignemont, F.; Faisal, A.A. Neurocognitive barriers to the embodiment of technology. Nat. Biomed. Eng. 2017, 1, 0014. [Google Scholar] [CrossRef] [Green Version]
- Tognetti, A.; Lorussi, F.; Carbonaro, N.; de Rossi, D. Wearable goniometer and accelerometer sensory fusion for knee joint angle measurement in daily life. Sensors 2015, 15, 28435–28455. [Google Scholar] [CrossRef] [Green Version]
- Tannous, H.; Istrate, D.; Benlarbi-Delai, A.; Sarrazin, J.; Gamet, D.; Ho Ba Tho, M.C.; Dao, T.T. A new multi-sensor fusion scheme to improve the accuracy of knee flexion kinematics for functional rehabilitation movements. Sensors 2016, 16, 1914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seel, T.; Raisch, J.; Schauer, T. IMU-based joint angle measurement for gait analysis. Sensors 2014, 14, 6891–6909. [Google Scholar] [CrossRef] [Green Version]
- Euston, M.; Coote, P.; Mahony, R.; Kim, J.; Hamel, T. A complementary filter for attitude estimation of a fixed-wing UAV. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nice, France, 22–26 September 2008. [Google Scholar]
- Mahony, R.; Hamel, T.; Pflimlin, J.M. Nonlinear complementary filters on the special orthogonal group. IEEE Trans. Automat. Contr. 2008, 53, 1203–1217. [Google Scholar] [CrossRef] [Green Version]
- Islam, T.; Islam, M.S.; Shajid-Ul-Mahmud, M.; Hossam-E-Haider, M. Comparison of complementary and Kalman filter based data fusion for attitude heading reference system. In Proceedings of the AIP Conference Proceedings, First International Conference on Mechanical Engineering and Applied Science (ICMEAS), Mist, Dhaka, Bangladesh, 22–23 February 2017. [Google Scholar]
- Ferdinando, H.; Khoswanto, H.; Purwanto, D. Embedded Kalman filter for inertial measurement unit (IMU) on the ATMega8535. In Proceedings of the 2012 International Symposium on Innovations in Intelligent Systems and Applications (INISTA), Trabzon, Turkey, 2–4 July 2012. [Google Scholar]
- Stephens-Fripp, B.; Alici, G.; Mutlu, R. A review of non-invasive sensory feedback methods for transradial prosthetic hands. IEEE Access 2018, 6, 6878–6899. [Google Scholar] [CrossRef]
- Marayong, P.; Khoo, I.-H.; Nguyen, K.; Bharti, N.; Ruhe, B.; Craig, D.; Wu, W. Vibrotactile device for rehabilitative training of persons with lower-limb amputation. In Proceedings of the 2014 IEEE Healthcare Innovation Conference (HIC), Seattle, WA, USA, 8–10 October 2014. [Google Scholar]
- Plauche, A.; Villarreal, D.; Gregg, R.D. A haptic feedback system for phase-based sensory restoration in above-knee prosthetic leg users. IEEE Trans Haptics 2016, 9, 421–426. [Google Scholar] [CrossRef] [Green Version]
- Park, S.K.; Suh, Y.S. A zero velocity detection algorithm using inertial sensors for pedestrian navigation systems. Sensors 2010, 10, 9163–9178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Yang, H.; Höflinger, F.; Reindl, L.M. Adaptive zero velocity update based on velocity classification for pedestrian tracking. IEEE Sens. J. 2017, 17, 2137–2145. [Google Scholar] [CrossRef]
Movement Profile | Sets | Type | Amplitude | Frequency | Deviation (σ) |
---|---|---|---|---|---|
Gaussian | 3 | Displacement | +90 degrees | N/A | 0.083 (s) 3(σ) = 0.25 (s) |
Maximum Velocity | 60/120/180 degrees/s | ||||
Sinusoid | 3 | Displacement | ±90 degrees | 0.67/1.33/2.00 (Hz) | N/A |
Maximum Velocity | 60/120/180 degrees/s |
Maximum Velocity | Moving Axis | RMSE (Degrees) | Stationary Axis | RMSE (Degrees) | ||
---|---|---|---|---|---|---|
Commercial IMU | Motion Capture | Commercial IMU | Motion Capture | |||
Slow (60 degrees/s) | X-axis | 0.66 ± 0.05 | 0.26 ± 0.02 | Y-axis | 0.03 ± 0.00 | 0.03 ± 0.00 |
Z-axis | 0.23 ± 0.00 | 0.01 ± 0.00 | ||||
Y-axis | 0.64 ± 0.07 | 0.26 ± 0.02 | X-axis | 0.23 ± 0.00 | 0.01 ± 0.00 | |
Z-axis | 0.03 ± 0.00 | 0.03 ± 0.00 | ||||
Z-axis | 0.67 ± 0.06 | 0.26 ± 0.02 | X-axis | 0.24 ± 0.00 | 0.01 ± 0.00 | |
Y-axis | 0.03 ± 0.00 | 0.03 ± 0.00 | ||||
Medium (120 degrees/s) | X-axis | 0.63 ± 0.05 | 0.15 ± 0.02 | Y-axis | 0.03 ± 0.00 | 0.03 ± 0.00 |
Z-axis | 0.05 ± 0.00 | 0.01 ± 0.00 | ||||
Y-axis | 0.61 ± 0.05 | 0.15 ± 0.02 | X-axis | 0.05 ± 0.00 | 0.01 ± 0.00 | |
Z-axis | 0.03 ± 0.00 | 0.03 ± 0.00 | ||||
Z-axis | 0.66 ± 0.05 | 0.15 ± 0.01 | X-axis | 0.05 ± 0.00 | 0.01 ± 0.00 | |
Y-axis | 0.03 ± 0.00 | 0.03 ± 0.00 | ||||
Fast (180 degrees/s) | X-axis | 0.87 ± 0.07 | 0.28 ± 0.02 | Y-axis | 0.02 ± 0.00 | 0.02 ± 0.00 |
Z-axis | 0.25 ± 0.00 | 0.03 ± 0.00 | ||||
Y-axis | 0.88 ± 0.08 | 0.28 ± 0.02 | X-axis | 0.26 ± 0.00 | 0.03 ± 0.00 | |
Z-axis | 0.02 ± 0.00 | 0.02 ± 0.00 | ||||
Z-axis | 0.88 ± 0.07 | 0.28 ± 0.02 | X-axis | 0.25 ± 0.00 | 0.03 ± 0.00 | |
Y-axis | 0.02 ± 0.00 | 0.02 ± 0.00 |
Maximum Velocity | Moving Axis | RMSE (Degrees) | Stationary Axis | RMSE (Degrees) | ||
---|---|---|---|---|---|---|
Commercial IMU | Motion Capture | Commercial IMU | Motion Capture | |||
Slow (60 degrees/s) | X-axis | 1.54 ± 0.07 | 5.71 ± 0.08 | Y-axis | 0.03 ± 0.00 | 0.43 ± 0.00 |
Z-axis | 0.68 ± 0.00 | 0.28 ± 0.00 | ||||
Y-axis | 1.49 ± 0.05 | 7.98 ± 0.09 | X-axis | 0.69 ± 0.00 | 0.29 ± 0.00 | |
Z-axis | 0.03 ± 0.00 | 0.43 ± 0.00 | ||||
Z-axis | 1.58 ± 0.06 | 4.24 ± 0.04 | X-axis | 0.68 ± 0.00 | 0.28 ± 0.00 | |
Y-axis | 0.03 ± 0.00 | 0.43 ± 0.00 | ||||
Medium (120 degrees/s) | X-axis | 1.29 ± 0.03 | 5.24 ± 0.04 | Y-axis | 0.20 ± 0.00 | 0.65 ± 0.00 |
Z-axis | 0.46 ± 0.00 | 0.17 ± 0.00 | ||||
Y-axis | 1.26 ± 0.04 | 7.62 ± 0.07 | X-axis | 0.46 ± 0.00 | 0.17 ± 0.00 | |
Z-axis | 0.21 ± 0.00 | 0.67 ± 0.00 | ||||
Z-axis | 1.29 ± 0.04 | 3.58 ± 0.06 | X-axis | 0.49 ± 0.00 | 0.17 ± 0.00 | |
Y-axis | 0.19 ± 0.00 | 0.64 ± 0.00 | ||||
Fast (180 degrees/s) | X-axis | 5.32 ± 0.04 | 11.48 ± 0.06 | Y-axis | 0.14 ± 0.00 | 0.54 ± 0.00 |
Z-axis | 0.40 ± 0.00 | 0.19 ± 0.00 | ||||
Y-axis | 5.36 ± 0.49 | 13.48 ± 0.05 | X-axis | 0.38 ± 0.00 | 0.19 ± 0.00 | |
Z-axis | 0.14 ± 0.00 | 0.54 ± 0.00 | ||||
Z-axis | 5.58 ± 0.07 | 9.32 ± 0.03 | X-axis | 0.42 ± 0.00 | 0.19 ± 0.00 | |
Y-axis | 0.14 ± 0.00 | 0.54 ± 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keri, M.-I.; Shehata, A.W.; Marasco, P.D.; Hebert, J.S.; Vette, A.H. A Cost-Effective Inertial Measurement System for Tracking Movement and Triggering Kinesthetic Feedback in Lower-Limb Prosthesis Users. Sensors 2021, 21, 1844. https://doi.org/10.3390/s21051844
Keri M-I, Shehata AW, Marasco PD, Hebert JS, Vette AH. A Cost-Effective Inertial Measurement System for Tracking Movement and Triggering Kinesthetic Feedback in Lower-Limb Prosthesis Users. Sensors. 2021; 21(5):1844. https://doi.org/10.3390/s21051844
Chicago/Turabian StyleKeri, McNiel-Inyani, Ahmed W. Shehata, Paul D. Marasco, Jacqueline S. Hebert, and Albert H. Vette. 2021. "A Cost-Effective Inertial Measurement System for Tracking Movement and Triggering Kinesthetic Feedback in Lower-Limb Prosthesis Users" Sensors 21, no. 5: 1844. https://doi.org/10.3390/s21051844
APA StyleKeri, M.-I., Shehata, A. W., Marasco, P. D., Hebert, J. S., & Vette, A. H. (2021). A Cost-Effective Inertial Measurement System for Tracking Movement and Triggering Kinesthetic Feedback in Lower-Limb Prosthesis Users. Sensors, 21(5), 1844. https://doi.org/10.3390/s21051844