Label-Free Electrochemical Sensor for Rapid Bacterial Pathogen Detection Using Vancomycin-Modified Highly Branched Polymers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Highly Branched Poly(N-isopropyl acrylamide) Polymers
2.2. Electrode Functionalization
2.3. Bacterial Culture
2.4. EIS Measurements
2.5. Temperature-Induced Polymer Conformation Change
2.6. Bacteria Detection
3. Results and Discussion
3.1. Polymer Characterisation
3.2. Electrode Functionalization with Vancomycin-Modified Highly Branched Polymers
3.3. Temperature-Induced Conformation Change of Immobilized Highly Branched Vancomycin-Modified Polymers
3.4. Vancomycin-Modified Highly Branched Polymer Functionalised Electrode-Based EIS Detection of Bacteria
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
- Synthesis of highly branched poly(N-isopropyl acrylamide) polymers (HB-PNIPAM) with N-pyrrole carbodithioate end groups
- Syntheses of HB-PNIPAM with pyrrole carbodithioate and carboxylic acid end groups (one portion ACVA)
- (a)
- The HB-PNIPAM with pyrrole dithioate end groups (1.00 g) was dissolved with stirring in dimethylformamide (DMF; 15 mL) in a 100 mL flask on a carousel reactor over 20 min. The reagent 4,4’-azobis(4-cyanovaleric acid) (ACVA, 1.8156 g, 6.478 mmol) was added to the solution under a N2 atmosphere and stirred at room temperature until full dissolved. The solution was degassed with N2 for 30 min with stirring then heated at 60 °C for 18 h. The solution was allowed to cool to room temperature then re-precipitated into rapidly stirring diethyl ether (300 L, the ether decanted off and the solids dried in a vacuum oven at 35 °C for 18 h. The solids were dissolved in ethanol (50 mL) then the solution subjected to ultrafiltration with ethanol (3 × 300 mL) to eventually give a polymer solution (ca. 30 mL), which following rotary evaporation gave 0.8040 g (80%) of an orange-yellow glassy solid.
- (b)
- The procedure in (a) was repeated but before precipitation a second portion of ACVA (1.8156 g, 6.478 mmol) was added to the solution and stirring continued at 60 °C for a further 18 h.
- (c)
- The procedure in (a) was repeated but before precipitation a second and third portion of ACVA (1.8156 g, 6.478 mmol) was added to the solution and stirring continued at 60 °C for a further 18 h.
- Synthesis of HB-PNIPAM-Van
References
- Tlili, C.; Sokullu, E.; Safavieh, M.; Tolba, M.; Ahmed, M.U.; Zourob, M. Bacteria screening, viability, and confirmation assays using bacteriophage-impedimetric/loop-mediated isothermal amplification dual-response biosensors. Anal. Chem. 2013, 85, 4893–4901. [Google Scholar] [CrossRef]
- Rentschler, S.; Kaiser, L.; Deigner, H.P. Emerging options for the diagnosis of bacterial infections and the characterization of antimicrobial resistance. Int. J. Mol. Sci. 2021, 22, 456. [Google Scholar] [CrossRef] [PubMed]
- Trotter, A.J.; Aydin, A.; Strinden, M.J.; O’Grady, J. Recent and emerging technologies for the rapid diagnosis of infection and antimicrobial resistance. Curr. Opin. Microbiol. 2019, 51, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Kilic, T.; Valinhas, A.T.D.S.; Wall, I.; Renaud, P.; Carrara, S. Label-free detection of hypoxia-induced extracellular vesicle secretion from MCF-7 cells. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Strong, M.E.; Richards, J.R.; Torres, M.; Beck, C.M.; La Belle, J.T. Faradaic electrochemical impedance spectroscopy for enhanced analyte detection in diagnostics. Biosens. Bioelectron. 2021, 177, 112949. [Google Scholar] [CrossRef] [PubMed]
- Duran, B.G.; Castañeda, E.; Armijo, F. Development of an electrochemical impedimetric immunosensor for Corticotropin Releasing Hormone (CRH) using half-antibody fragments as elements of biorecognition. Biosens. Bioelectron. 2019, 131, 171–177. [Google Scholar] [CrossRef]
- Faria, H.A.M.; Zucolotto, V. Label-free electrochemical DNA biosensor for zika virus identification. Biosens. Bioelectron. 2019, 131, 149–155. [Google Scholar] [CrossRef]
- Lima, D.; Hacke, A.C.M.; Inaba, J.; Pessôa, C.A.; Kerman, K. Electrochemical detection of specific interactions between apolipoprotein E isoforms and DNA sequences related to Alzheimer’s disease. Bioelectrochemistry 2020, 133, 1–9. [Google Scholar] [CrossRef]
- Li, N.; Chow, A.M.; Ganesh, H.V.S.; Ratnam, M.; Brown, I.R.; Kerman, K. Diazonium-modified screen-printed electrodes for immunosensing growth hormone in blood samples. Biosensors 2019, 9, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, H.; Li, S.; Terebiznik, M.; Guyard, C.; Kerman, K. Biosensors for the detection of interaction between legionella pneumophila collagen-like protein and glycosaminoglycans. Sensors 2018, 18, 2668. [Google Scholar] [CrossRef] [Green Version]
- Kanyong, P.; Patil, A.V.; Davis, J.J. Functional Molecular Interfaces for Impedance-Based Diagnostics. Annu. Rev. Anal. Chem. 2020, 13, 183–200. [Google Scholar] [CrossRef]
- Díaz-Fernández, A.; Miranda-Castro, R.; de-los-Santos-Álvarez, N.; Lobo-Castañón, M.J.; Estrela, P. Impedimetric aptamer-based glycan PSA score for discrimination of prostate cancer from other prostate diseases. Biosens. Bioelectron. 2021, 175, 112872. [Google Scholar] [CrossRef]
- Mayall, R.M.; Smith, C.A.; Hyla, A.S.; Lee, D.S.; Crudden, C.M.; Birss, V.I. Ultrasensitive and Label-Free Detection of the Measles Virus Using an N-Heterocyclic Carbene-Based Electrochemical Biosensor. ACS Sens. 2020, 5, 2747–2752. [Google Scholar] [CrossRef]
- Cebula, Z.; Zołedowska, S.; Dziabowska, K.; Skwarecka, M.; Malinowska, N.; Bialobrzeska, W.; Czaczyk, E.; Siuzdak, K.; Sawczak, M.; Bogdanwicz, R.; et al. Detection of the Plant Pathogen Pseudomonas Impedance Spectroscopy. Sensors 2019, 19, 5411. [Google Scholar] [CrossRef] [Green Version]
- Siller, I.G.; Preuss, J.; Urmann, K.; Ho, M.R.; Scheper, T.; Bahnemann, J. 3D-Printed Flow Cells for Aptamer-Based Impedimetric Detection of E. coli Crooks Strain. Sensors 2020, 20, 4421. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Yen, H.Y.; Lai, L.T.; Perng, G.C.; Lee, C.R.; Wu, S.J. A label-free impedimetric genosensor for the nucleic acid amplification-free detection of extracted RNA of dengue virus. Sensors 2020, 20, 3728. [Google Scholar] [CrossRef]
- Kwasny, D.; Tehrani, S.E.; Almeida, C.; Schjødt, I.; Dimaki, M.; Svendsen, W.E. Direct detection of candida albicans with a membrane based electrochemical impedance spectroscopy sensor. Sensors 2018, 18, 2214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, A.R.; Moreira, F.T.C.; Fernandes, R.; Sales, M.G.F. Novel and simple electrochemical biosensor monitoring attomolar levels of miRNA-155 in breast cancer. Biosens. Bioelectron. 2016, 80, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.M.Y.; Henihan, G.; Macdonald, D.; Michalowski, A.; Templeton, K.; Gibb, A.P.; Schulze, H.; Bachmann, T.T. Rapid Electrochemical Detection of New Delhi Metallo-beta-lactamase Genes To Enable Point-of-Care Testing of Carbapenem-Resistant Enterobacteriaceae. Anal. Chem. 2015, 87, 7738–7745. [Google Scholar] [CrossRef] [PubMed]
- Henihan, G.; Schulze, H.; Corrigan, D.K.; Giraud, G.; Terry, J.G.; Hardie, A.; Campbell, C.J.; Walton, A.J.; Crain, J.; Pethig, R.; et al. Label- and amplification-free electrochemical detection of bacterial ribosomal RNA. Biosens. Bioelectron. 2016, 81, 487–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corrigan, D.K.; Schulze, H.; Henihan, G.; Hardie, A.; Ciani, I.; Giraud, G.; Terry, J.G.; Walton, A.J.; Pethig, R.; Ghazal, P.; et al. Development of a PCR-free electrochemical point of care test for clinical detection of methicillin resistant Staphylococcus aureus (MRSA). Analyst 2013, 138, 6997–7005. [Google Scholar] [CrossRef]
- Corrigan, D.K.; Schulze, H.; Henihan, G.; Ciani, I.; Giraud, G.; Terry, J.G.; Walton, A.J.; Pethig, R.; Ghazal, P.; Crain, J.; et al. Impedimetric detection of single-stranded PCR products derived from methicillin resistant Staphylococcus aureus (MRSA) isolates. Biosens. Bioelectron. 2012, 34, 178–184. [Google Scholar] [CrossRef]
- Sarker, P.; Shepherd, J.; Swindells, K.; Douglas, I.; MacNeil, S.; Swanson, L.; Rimmer, S. Highly branched polymers with polymyxin end groups responsive to Pseudomonas aeruginosa. Biomacromolecules 2011, 12, 1–5. [Google Scholar] [CrossRef]
- Sarker, P.; Swindells, K.; Douglas, C.W.I.; MacNeil, S.; Rimmer, S.; Swanson, L. Förster resonance energy transfer confirms the bacterial-induced conformational transition in highly-branched poly(N-isopropyl acrylamide with vancomycin end groups on binding to Staphylococcus aureus. Soft Matter 2014, 10, 5824–5835. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, J.; Sarker, P.; Swindells, K.; Douglas, I.; MacNeil, S.; Swanson, L.; Rimmer, S. Binding bacteria to highly branched poly(N-isopropyl acrylamide) modified with vancomycin induces the coil-to-globule transition. J. Am. Chem. Soc. 2010, 132, 1736–1737. [Google Scholar] [CrossRef] [PubMed]
- Teratanatorn, P.; Hoskins, R.; Swift, T.; Douglas, C.W.I.; Shepherd, J.; Rimmer, S. Binding of Bacteria to Poly(N-isopropylacrylamide) Modified with Vancomycin: Comparison of Behavior of Linear and Highly Branched Polymers. Biomacromolecules 2017, 18, 2887–2899. [Google Scholar] [CrossRef] [Green Version]
- Swift, T.; Hoskins, R.; Telford, R.; Plenderleith, R.; Pownall, D.; Rimmer, S. Analysis using size exclusion chromatography of poly(N-isopropyl acrylamide) using methanol as an eluent. J. Chromatogr. A 2017, 1508, 16–23. [Google Scholar] [CrossRef]
- Locatelli, E.; Monaco, I.; Comes Franchini, M. Surface modifications of gold nanorods for applications in nanomedicine. RSC Adv. 2015, 5, 21681–21699. [Google Scholar] [CrossRef]
- Zhao, Y.; Pérez-Segarra, W.; Shi, Q.; Wei, A. Dithiocarbamate assembly on gold. J. Am. Chem. Soc. 2005, 127, 7328–7329. [Google Scholar] [CrossRef] [Green Version]
- Scarpa, J.S.; Mueller, D.D.; Klotz, I.M. Slow Hydrogen-Deuterium Exchange in a Non-α-helical Polyamide. J. Am. Chem. Soc. 1967, 89, 6024–6030. [Google Scholar] [CrossRef]
- Sinha, M.; Jupe, J.; Mack, H.; Coleman, T.P.; Lawrence, S.M.; Fraley, I. Towards Detection Directly From Whole Blood: Current and Emerging Technologies for Rapid Diagnosis of Microbial Infections Without. Clin. Microbiol. Rev. 2018, 31, 1–26. [Google Scholar]
- Narayanan, M. New technologies in microbiology and their potential impact on paediatric practice. Arch. Dis. Child. 2019, 104, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Swift, T.; Katsikogianni, M.; Hoskins, R.; Teratarantorn, P.; Douglas, I.; MacNeil, S.; Rimmer, S. Highly-branched poly(N-isopropyl acrylamide) functionalised with pendant Nile red and chain end vancomycin for the detection of Gram-positive bacteria. Acta Biomater. 2019, 87, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Kadri, S.S.; Lai, Y.L.; Warner, S.; Strich, J.R.; Babiker, A.; Ricotta, E.E.; Demirkale, C.Y.; Dekker, J.P.; Palmore, T.N.; Rhee, C.; et al. Inappropriate empirical antibiotic therapy for bloodstream infections based on discordant in-vitro susceptibilities: A retrospective cohort analysis of prevalence, predictors, and mortality risk in US hospitals. Lancet Infect. Dis. 2021, 21, 241–251. [Google Scholar] [CrossRef]
- O’Grady, M.C.; Barry, L.; Corcoran, G.D.; Hooton, C.; Sleator, R.D.; Lucey, B. Empirical treatment of urinary tract infections: How rational are our guidelines? J. Antimicrob. Chemother. 2019, 74, 214–217. [Google Scholar] [CrossRef] [PubMed]
[kg mol−1] a | [kg mol−1] a | [kg mol−1] a | Fvan [%] b | Fpy [%] c | LCST d [°C] | |
---|---|---|---|---|---|---|
HB-PNIPAM-Van-A | 205.5 | 490 | 704 | 1.51 | 3.42 | 29.9 |
HB-PNIPAM-Van-B | 304.9 | 445 | 550 | 1.40 | 5.06 | 27.3 |
HB-PNIPAM-Van-C | 230.0 | 504 | 709 | 0.42 | 7.01 | 24.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schulze, H.; Wilson, H.; Cara, I.; Carter, S.; Dyson, E.N.; Elangovan, R.; Rimmer, S.; Bachmann, T.T. Label-Free Electrochemical Sensor for Rapid Bacterial Pathogen Detection Using Vancomycin-Modified Highly Branched Polymers. Sensors 2021, 21, 1872. https://doi.org/10.3390/s21051872
Schulze H, Wilson H, Cara I, Carter S, Dyson EN, Elangovan R, Rimmer S, Bachmann TT. Label-Free Electrochemical Sensor for Rapid Bacterial Pathogen Detection Using Vancomycin-Modified Highly Branched Polymers. Sensors. 2021; 21(5):1872. https://doi.org/10.3390/s21051872
Chicago/Turabian StyleSchulze, Holger, Harry Wilson, Ines Cara, Steven Carter, Edward N. Dyson, Ravikrishnan Elangovan, Stephen Rimmer, and Till T. Bachmann. 2021. "Label-Free Electrochemical Sensor for Rapid Bacterial Pathogen Detection Using Vancomycin-Modified Highly Branched Polymers" Sensors 21, no. 5: 1872. https://doi.org/10.3390/s21051872
APA StyleSchulze, H., Wilson, H., Cara, I., Carter, S., Dyson, E. N., Elangovan, R., Rimmer, S., & Bachmann, T. T. (2021). Label-Free Electrochemical Sensor for Rapid Bacterial Pathogen Detection Using Vancomycin-Modified Highly Branched Polymers. Sensors, 21(5), 1872. https://doi.org/10.3390/s21051872