EEG-Based Sleep Staging Analysis with Functional Connectivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Description
2.2. Framework of Our Method
2.2.1. Data Preprocessing
- belonging to the same stage, but duration is too short (such as only 2 to 3 min).
- the unusual waking duration (tens of seconds) and its before and after 30 s duration during a certain sleep stage.
- the beginning 30 s and the last 30 s of a certain sleep stage.
2.2.2. Phase-Locked Value
2.2.3. Band Evaluation
2.2.4. Classifier
2.2.5. Frequency Band Fusion Strategy
3. Results
3.1. PLV Values between Six Frequency Bands for Different Sleep Stages
3.2. Evaluation of Different Frequency Bands
3.3. Classification
3.3.1. Classification Performance of Single-Band Feature
3.3.2. Classification Performance for Bands Fusion
4. Discussion
4.1. The Dominant Role of Alpha Band in Sleep Staging
4.2. Inconsistency between Frequency Band Evaluation and the Classification Accuracy of Beta1 Band
4.3. Comparisons with Start-of-Arts Works
5. Conclusions
- 1.
- For brain functional connectivity values, the average PLV increases in the delta and alpha band, while decreases in the high frequency beta2 and gamma band during non-REM periods;
- 2.
- Different frequency bands have different discriminative abilities for distinguishing between sleep stages. Herein, alpha band show the dominant role in sleeping stage. Beta1 band shows good performance for classifying ’REM and N2’ and ’REM and N3’ but higher classification error rate for ’N2 and N3’.
- 3.
- The classification performance of PLV is better than state-of-art studies. The best accuracy is 96.91% and 96.14% for intra-subject and inter-subject cases, respectively. We also replicated time-domain, frequency-domain and non-linear features on the data set used in our paper and results show the better performance of PLV.In the future, we plan to develop on online brain computer interface for automatic sleep staging monitoring combined with this approach and graph convolution network.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altevogt, B.M.; Colten, H.R. Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem; Washington: National Academies Press, 2006. [Google Scholar]
- Younes, M. The Case for Using Digital EEG Analysis in Clinical Sleep Medicine. Sleep Sci. Pract. 2017, 1, 1–15. [Google Scholar] [CrossRef]
- Rechtschaffen, A. A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects; Public Health Service: Washington, DC, USA, 1968. [Google Scholar]
- Iber, C.; Ancoli-Israel, S.; Chesson, A.L.; Quan, S.F. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications; American Academy of Sleep Medicine: Westchester, IL, USA, 2007; Volume 1. [Google Scholar]
- Chapotot, F.; Becq, G. Automated Sleep-Wake Staging Combining Robust Feature Extraction, Artificial Neural Network Classification, and Flexible Decision Rules. International Journal of Adaptive Control and Signal Processing. 2010, 24, 409–423. [Google Scholar] [CrossRef]
- Acharya, U.R.; Sree, S.V.; Swapna, G.; Martis, R.J.; Suri, J.S. Automated EEG Analysis of Epilepsy: A Review. Knowledge-Based Systems 2013, 45, 147–165. [Google Scholar] [CrossRef]
- Aydın, S.; Tunga, M.A.; Yetkin, S. Mutual Information Analysis of Sleep EEG in Detecting Psycho-physiological Insomnia. J. Med. Syst. 2015, 39, 43. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, L.; Zeng, B.; Wang, W. Automatic Sleep Stage Scoring Using Hilbert-Huang Transform with BP Neural Network. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010. [Google Scholar]
- Gao, Q.; Zhou, J.; Ye, B.; Wu, X. Automatic Sleep Staging Method Based on Energy Features and Least Squares Support Vector Machine Classifier. Journal of Biomedical Engineering 2015, 32, 531–536. [Google Scholar]
- Yuce, A.B.; Yaslan, Y. A Disagreement Based Co-active Learning Method for Sleep Stage Classification. In Proceedings of the 2016 International Conference on Systems, Signals and Image Processing (IWSSIP), Bratislava, Slovak, 23–25 May 2016. [Google Scholar]
- Diykh, M.; Li, Y.; Wen, P. EEG Sleep Stages Classification Based on Time Domain Features and Structural Graph Similarity. IEEE Trans. Neural Syst. Rehabil. Eng. 2016, 24, 1159–1168. [Google Scholar] [CrossRef]
- Diykh, M.; Li, Y.; Wen, P.; Li, T. Complex Networks Approach for Depth of Anesthesia Assessment. Measurement 2018, 119, 178–189. [Google Scholar] [CrossRef]
- Phan, H.; Andreotti, F.; Cooray, N.; Chèn, Y.O.; De Vos, M. DNN Filter Bank Improves 1-max Pooling CNN for Single-channel EEG Automatic Sleep Stage Classification. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 17–21 July 2018; pp. 453–456. [Google Scholar]
- Zhou, J.; Tian, Y.; Wang, G.; Liu, J.; Hu, Y. Automatic Sleep Stage Classification with Single Channel EEG Signal Based on Two-layer Stacked Ensemble Model. IEEE Access 2020, 8, 57283–57297. [Google Scholar] [CrossRef]
- Humayun, A.I.; Sushmit, A.S.; Hasan, T.; Bhuiyan, M.I.H. End-to-end Sleep Staging with Raw Single Channel EEG using Deep Residual ConvNets. In Proceedings of the 2019 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI), Chicago, IL, USA, 19–22 May 2019; pp. 1–5. [Google Scholar]
- da Silveira, T.L.; Kozakevicius, A.J.; Rodrigues, C.R. Single-channel EEG Sleep Stage Classification Based on a Streamlined set of statistical features in wavelet domain. Med. Biol. Eng. Comput. 2017, 55, 343–352. [Google Scholar] [CrossRef]
- Zhang, T.; Jiang, Z.; Li, D.; Wei, X.; Guo, B.; Huang, W.; Xu, G. Sleep Staging Using Plausibility Score: A Novel Feature Selection Method Based on Metric Learning. IEEE J. Biomed. Health Inform. 2020, 25, 577–590. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.F.; Kuo, C.E.; Hu, Y.H.; Cheng, Y.S. A Rule-based Automatic Sleep Staging Method. J. Neuroence Methods 2012, 205, 169–176. [Google Scholar] [CrossRef]
- Liu, X.; Shi, J.; Tu, Y.; Zhang, Z. Joint Collaborative Representation Based Sleep Stage Classification with Multi-channel EEG Signals. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 5–29 August 2015. [Google Scholar]
- Patrick, K.; Achim, S.; Judith, B.; Konstantin, T.; Claus, M.; Holger, S.; Maximilian, T. Analysis of Multichannel EEG Patterns During Human Sleep: A Novel Approach. Front. Hum. Neurosci. 2018, 12, 121. [Google Scholar]
- Zhu, G.; Li, Y.; Wen, P.P. Analysis and Classification of Sleep Stages Based on Difference Visibility Graphs From a Single-Channel EEG Signal. IEEE J. Biomed. Health Inform. 2014, 18, 1813–1821. [Google Scholar] [CrossRef] [PubMed]
- Gopika, G.K.; Prabhu, S.S.; Sinha, N. Sleep EEG Analysis Utilizing Inter-channel Covariance Matrices. Biocybern. Biomed. Eng. 2020, 40, 527–545. [Google Scholar]
- Stevner, A.B.A.; Vidaurre, D.; Cabral, J.; Rapuano, K.; Nielsen, S.F.V.; Tagliazucchi, E.; Laufs, H.; Vuust, P.; Deco, G.; Woolrich, M.W.A. Discovery of Key Whole-brain Transitions and Dynamics during Human Wakefulness and Non-REM Sleep. Nat. Commun. 2019, 10, 1035. [Google Scholar] [CrossRef] [PubMed]
- Tagliazucchi, E.; Wegner, F.V.; Morzelewski, A.; Brodbeck, V.; Laufs, H. Breakdown of Long-range Temporal Dependence in Default Mode and Attention Networks during Deep Sleep. Proc. Natl. Acad. Sci. USA 2013, 110, 15419–15424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enzo Tagliazucchi, H.L. Decoding Wakefulness Levels from Typical FMRI Resting-state Data Reveals Reliable Drifts between Wakefulness and Sleep. Neuron 2014, 82, 695–708. [Google Scholar] [CrossRef] [Green Version]
- Landwehr, R.; Volpert, A.; Jowaed, A. A Recurrent Increase of Synchronization in the EEG Continues from Waking throughout NREM and REM Sleep. ISRN Neurosci. 2014, 2014, 756952. [Google Scholar]
- Lv, J.; Liu, D.; Ma, J.; Wang, X.; Zhang, J. Graph Theoretical Analysis of BOLD Functional Connectivity during Human Sleep without EEG Monitoring. PLoS ONE 2015, 10, e0137297. [Google Scholar] [CrossRef] [PubMed]
- Marie-Ve, D.; Julie, C.; Jean-Marc, L.; Maxime, F.; Nadia, G.; Jacques, M.; Antonio, Z. EEG Functional Connectivity Prior to Sleepwalking: Evidence of Interplay Between Sleep and Wakefulness. Sleep 2017, 40. [Google Scholar]
- Terzano, M.G.; Parrino, L.; Sherieri, A.; Chervin, R.; Chokroverty, S.; Guilleminault, C.; Hirshkowitz, M.; Mahowald, M.; Moldofsky, H.; Rosa, A.; et al. Atlas, Rules, and Recording Techniques for the Scoring of Cyclic Alternating Pattern (CAP) in human sleep. Sleep Med. 2002, 2, 537. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Luis, A.N.; Amaral, L.G. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation 2000, 101, 215–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohayon, M.M.; Carskadon, M.A.; Christian, G.; Vitiello, M.V. Meta-Analysis of Quantitative Sleep Parameters From Childhood to Old Age in Healthy Individuals: Developing Normative Sleep Values Across the Human Lifespan. Sleep 2004, 27, 1255–1273. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.B.; Budhiraja, R.; Gottlieb, D.J.; Gozal, D.; Iber, C.; Kapur, V.K.; Marcus, C.L.; Mehra, R.; Parthasarathy, S.; Quan, S.F.A. Rules for Scoring Respiratory Events in Sleep: Update of the 2007 AASM Manual for the Scoring of Sleep and Associated Events. J. Clin. Sleep Med. 2012, 8, 597–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brignol, A.; Al-Ani, T.; Drouot, X. EEG-based Automatic Sleep-wake Classification in Humans Using Short and Standard Epoch Lengths. In Proceedings of the 2012 IEEE 12th International Conference on Bioinformatics & Bioengineering (BIBE), Larnaca, Cyprus, 11–13 November 2012. [Google Scholar]
- Wilson, R.S.; Mayhew, S.D.; Rollings, D.T.; Goldstone, A.; Przezdzik, I.; Arvanitis, T.N.; Bagshaw, A.P. Influence of Epoch Length on Measurement of Dynamic Functional Connectivity in Wakefulness and Behavioural Validation in Sleep. Neuroimage 2015, 112, 169–179. [Google Scholar] [CrossRef]
- Ludwig, K.A.; Miriani, R.M.; Langhals, N.B.; Joseph, M.D.; Anderson, D.J.; Kipke, D.R. Using a Common Average Reference to Improve Cortical Neuron Recordings from Microelectrode Arrays. J. Neurophysiol. 2009, 101, 1679–1689. [Google Scholar] [CrossRef]
- Lee, T.W. Independent Component Analysis; Springer: Berlin, Germany, 1998; pp. 27–66. [Google Scholar]
- Mognon, A.; Jovicich, J.; Bruzzone, L.; Buiatti, M. ADJUST: An Automatic EEG Artifact Detector Based on the Joint Use of Spatial and Temporal Features. Psychophysiology 2011, 48, 229–240. [Google Scholar] [CrossRef]
- Lachaux, J.P.; Rodriguez, E.; Martinerie, J.; Varela, F.J.J. Measuring Phase Synchrony in Brain Signals. Hum. Brain Mapp. 2015, 8, 194–208. [Google Scholar] [CrossRef] [Green Version]
- Quiroga, R.Q.; Kraskov, A.; Kreuz, T.; Grassberger, P. Performance of Different Synchronization Measures in Real Data: A Case Study on Electroencephalographic Signals. Phys. Rev. E 2002, 65, 041903. [Google Scholar] [CrossRef] [Green Version]
- Niso, G.; Bruña, R.; Pereda, E.; Gutiérrez, R.; Bajo, R.; Maestú, F.; Del-Pozo, F. HERMES: Towards an Integrated Toolbox to Characterize Functional and Effective Brain Connectivity. Neuroinformatics 2013, 11, 405–434. [Google Scholar] [CrossRef] [Green Version]
- Blankertz, B.; Dornhege, G.; Krauledat, M.; Müller, K.R.; Curio, G. The Non-invasive Berlin Brain-Computer Interface: Fast acquisition of Effective Performance in Untrained Subjects. NeuroImage 2007, 37, 539–550. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 27. [Google Scholar] [CrossRef]
- Breiman, L. Stacked Regressions. Mach. Learn. 1996, 24, 49–64. [Google Scholar] [CrossRef] [Green Version]
- Rodenbeck, A.; Binder, R.; Geisler, P.; Danker-Hopfe, H.; Lund, R.; Raschke, F.; Weeß, H.G.; Schulz, H. A Review of Sleep EEG Patterns. Part I: A Compilation of Amended Rules for their Visual Recognition According to Rechtschaffen and Kales. Somnologie 2006, 10, 159–175. [Google Scholar] [CrossRef]
- Cantero, J.L.; Atienza, M.; Salas, R.M. Spectral Features of EEG Alpha Activity in Human REM Sleep: Two Variants with Different Functional Roles? Sleep N. Y. 2000, 23, 746–754. [Google Scholar] [CrossRef]
- Carskadon, M.A.; Rechtschaffen, A. Monitoring and Staging Human Sleep. Princ. Pract. Sleep Med. 2011, 5, 16–26. [Google Scholar]
- Ben Dkhil, M.; Chawech, N.; Wali, A.; Alimi, A.M. Towards an Automatic Drowsiness Detection System by Evaluating the Alpha Band of EEG Signals. In Proceedings of the IEEE International Symposium on Applied Machine Intelligence & Informatics, Herl’any, 26–28 January 2017; pp. 000371–000376. [Google Scholar]
- Knaut, P.; von Wegner, F.; Morzelewski, A.; Laufs, H. EEG-correlated FMRI of Human Alpha (De-) synchronization. Clin. Neurophysiol. 2019, 130, 1375–1386. [Google Scholar] [CrossRef] [PubMed]
- Riemann, D.; Spiegelhalder, K.; Feige, B.; Voderholzer, U.; Berger, M.; Perlis, M.; Nissen, C. The Hyperarousa Model of Insomnia: A Review of the Concept and its Evidence. Sleep Med. Rev. 2010, 14, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Spiegelhalder, K.; Regen, W.; Feige, B.; Holz, J.; Piosczyk, H.; Baglioni, C.; Riemann, D.; Nissen, C. Increased EEG Sigma and Beta Power during NREM Sleep in Primary Insomnia. Biol. Psychol. 2012, 91, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Sunwoo, J.S.; Cha, K.S.; Byun, J.I.; Kim, T.J.; Jun, J.S.; Lim, J.A.; Lee, S.T.; Jung, K.H.; Park, K.I.; Chu, K.; et al. Abnormal Activation of Motor Cortical Network during Phasic REM Sleep in Idiopathic REM Sleep Behavior Disorder. Sleep 2019, 42, zsy227. [Google Scholar] [CrossRef]
- Sors, A.; Bonnet, S.; Mirek, S.; Vercueil, L.; Payen, J.F. A Convolutional Neural Network for Sleep Stage Scoring from Raw Single-channel EEG. Biomed. Signal Process. Control. 2018, 42, 107–114. [Google Scholar] [CrossRef]
- Sharma, M.; Goyal, D.; Pv, A.; Acharya, U.R. An Accurate Sleep Stages Classification System Using a New Class of Optimally Time-frequency Localized Three-band Wavelet Filter Bank. Comput. Biol. Med. 2018, 98, 58–75. [Google Scholar] [CrossRef] [PubMed]
- Lajnef, T.; Chaibi, S.; Ruby, P.; Aguera, P.E.; Eichenlaub, J.B.; Samet, M.; Kachouri, A.; Jerbi, K. Learning Machines and Sleeping Brains: Automatic Sleep Stage Classification Using Decision-tree Multi-class Support Vector Machines. J. Neurosci. Methods 2015, 250, 94–105. [Google Scholar] [CrossRef]
- Michielli, N.; Acharya, U.R.; Molinari, F. Cascaded LSTM Recurrent Neural Network for Automated Sleep Stage Classification Using Single-channel EEG Signals. Comput. Biol. Med. 2019, 106, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Saebipour, M.R.; Joghataei, M.T.; Yoonessi, A.; Sadeghniiat-Haghighi, K.; Khalighinejad, N.; Khademi, S. Slow Oscillating Transcranial Direct Current Stimulation during Sleep has A Sleep-stabilizing Effect in Chronic Insomnia: A Pilot Study. J. Sleep Res. 2015, 24, 518–525. [Google Scholar] [CrossRef] [PubMed]
N1/S1 | N2/S2 | N3 | REM | ||
---|---|---|---|---|---|
S3 | S4 | ||||
delta waves | / | <20% | 25∼50% 0.75∼3 Hz | >50% | / |
alpha waves | <50% | / | / | / | mainly in Occipital lobe |
sleep spindle waves | / | 12.5∼15.5 Hz, occur in central, bilateral frontal, parietal, forehead, temporal lobes | about 12 Hz gradually reduce, mainly in frontal lobe | 6–10 Hz, gradually disappear, mainly in frontal lobe | / |
K-complex waves | / | occur mainly in frontal lobe | evoked by external stimuli | evoked by strong stimuli | / |
Band | n3 | n5 | n10 | n11 | Inter-Subjects | |||
---|---|---|---|---|---|---|---|---|
REM | N2 | N3 | ACC | |||||
delta | 85.80 | 89.31 | 89.21 | 84.98 | 84.86 | 87.87 | 87.65 | 86.86 |
theta | 82.10 | 85.53 | 74.82 | 82.16 | 86.24 | 81.87 | 87.24 | 84.86 |
alpha | 88.27 | 86.79 | 94.96 | 88.73 | 93.58 | 88.70 | 90.53 | 90.86 |
beta1 | 76.54 | 74.74 | 92.81 | 82.63 | 91.74 | 76.57 | 81.07 | 82.86 |
beta2 | 85.80 | 79.25 | 87.05 | 78.87 | 81.19 | 80.75 | 86.01 | 82.71 |
gamma | 82.72 | 75.47 | 76.98 | 85.92 | 85.78 | 79.50 | 85.19 | 83.43 |
n3 | n5 | n10 | n11 | Inter-Subjects | |||||
---|---|---|---|---|---|---|---|---|---|
REM | N2 | N3 | ACC | ||||||
Two bands | C(delta+beta1) | 87.65 | 93.08 | 91.37 | 91.08 | 92.20 | 88.70 | 88.48 | 89.71 |
C(theta+gamma) | 88.27 | 88.68 | 89.93 | 88.73 | 93.58 | 87.03 | 93.42 | 91.29 | |
C(alpha+beta2) | 91.36 | 88.68 | 95.37 | 88.26 | 94.04 | 88.70 | 91.77 | 91.43 | |
Three bands | C(alpha+beta1+delta) | 94.41 | 93.08 | 92.81 | 94.37 | 93.12 | 92.05 | 95.06 | 93.43 |
E(alpha+beta1+delta) | 91.30 | 91.19 | 94.96 | 92.49 | 96.33 | 92.89 | 95.88 | 93.43 | |
Four bands | C(alpha+beta1+ delta+gamma) | 96.89 | 94.34 | 92.81 | 94.37 | 94.95 | 94.14 | 95.47 | 94.86 |
E(alpha+beta1+ delta+gamma) | 93.79 | 91.19 | 94.96 | 93.90 | 96.33 | 92.89 | 95.88 | 95.00 | |
Six bands | Concatenation | 96.91 | 95.60 | 94.24 | 96.71 | 96.33 | 94.98 | 97.12 | 96.14 |
Ensemble | 95.06 | 92.45 | 93.53 | 93.90 | 96.33 | 93.72 | 95.88 | 95.29 | |
E(C) | 93.21 | 93.08 | 94.96 | 93.90 | 95.87 | 94.98 | 95.47 | 95.43 |
Authors | Features | Database | Classifier | Results (%) | |||
---|---|---|---|---|---|---|---|
REM (+N1) | N2 (+N1) | N3 | ACC | ||||
Sors et al. [52] 2018 | raw signal samples | SSH-1 | CNN | 90.54 | 85.8 | 92.48 | 90.74 |
Sharma et al. [53] 2018 | time-domain | Sleep-EDF | Multi-class SVM | 71.81 | 82.57 | 84.48 | 81.13 |
CAP | Multi-class SVM | 84.40 | 84.10 | 85.60 | 84.71 | ||
Lajnef et al. [54] 2015 | frequency-domain | DyCog Lab’PSD records | D-SVM | 89.13 | 81.63 | 87.88 | 87.06 |
CAP | Multi-class SVM | 87.61 | 82.85 | 90.95 | 87.14 | ||
Michielli et al. [55] 2019 | statistical features and spectral features | Sleep-EDF | LSTM -RNN | 91.59 | 89.55 | 92.09 | 90.60 |
CAP | Multi-class SVM | 96.79 | 86.61 | 93.42 | 92.14 | ||
Proposed method | PLV | CAP | Multi-class SVM | 96.33 | 94.98 | 97.12 | 96.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Zhang, J.; Zhu, L.; Tang, J.; Lin, G.; Kong, W.; Lei, X.; Zhu, L. EEG-Based Sleep Staging Analysis with Functional Connectivity. Sensors 2021, 21, 1988. https://doi.org/10.3390/s21061988
Huang H, Zhang J, Zhu L, Tang J, Lin G, Kong W, Lei X, Zhu L. EEG-Based Sleep Staging Analysis with Functional Connectivity. Sensors. 2021; 21(6):1988. https://doi.org/10.3390/s21061988
Chicago/Turabian StyleHuang, Hui, Jianhai Zhang, Li Zhu, Jiajia Tang, Guang Lin, Wanzeng Kong, Xu Lei, and Lei Zhu. 2021. "EEG-Based Sleep Staging Analysis with Functional Connectivity" Sensors 21, no. 6: 1988. https://doi.org/10.3390/s21061988
APA StyleHuang, H., Zhang, J., Zhu, L., Tang, J., Lin, G., Kong, W., Lei, X., & Zhu, L. (2021). EEG-Based Sleep Staging Analysis with Functional Connectivity. Sensors, 21(6), 1988. https://doi.org/10.3390/s21061988