A Low-Cost Active Reflector for Interferometric Monitoring Based on Sentinel-1 SAR Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Working Principle
2.2. The Design
2.3. The Implementation
2.3.1. The Antenna
2.3.2. The Amplifying Section
2.4. Methodology
3. Experimental Test of the Prototype
3.1. The Laboratory Test
3.1.1. The Setup
3.1.2. The Results
3.2. The Test in Controlled Environment at Short Range
Displ = Displmeas—Offset T > 20 °C
4. The Field Test in Operative Conditions
4.1. Amplitude
4.2. Phase
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent scatterer interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Jauvin, M.; Yan, Y.; Trouvé, E.; Fruneau, B.; Gay, M.; Girard, B. Integration of Corner Reflectors for the Monitoring of Mountain Glacier Areas with Sentinel-1 Time Series. Remote Sens. 2019, 11, 988. [Google Scholar] [CrossRef] [Green Version]
- Garthwaite, M. On the Design of Radar Corner Reflectors for Deformation Monitoring in Multi-Frequency InSAR. Remote Sens. 2017, 9, 648. [Google Scholar] [CrossRef] [Green Version]
- Doerry, A.W. Reflectors for SAR Performance Testing; Technical Report SAND2008-0396 for the United States Department of Energy; Sandia National Laboratories: Albuquerque, NM, USA, January 2008. [Google Scholar]
- Chengfan, L.; Jingyuan, Y.; Zhao, J.; Zhang, G.; Shan, X. The selection of artificial corner reflectors based on RCS analysis. Acta Geophys. 2012, 60, 43–58. [Google Scholar] [CrossRef]
- Dheenathayalan, P.; Caro Cuenca, M.; Hoogeboom, P.; Hanssen, R. Small Reflectors for Ground Motion Monitoring with InSAR. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6703–6712. [Google Scholar] [CrossRef]
- Quin, G.; Loreaux, P. Submillimeter Accuracy of Multipass Corner Reflector Monitoring by PS Technique. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1775–1783. [Google Scholar] [CrossRef]
- Parker, A.; Featherstone, W.; Penna, N.; Filmer, M.; Garthwaite, M.C. Practical Considerations before Installing Ground-Based Geodetic Infrastructure for Integrated InSAR and cGNSS Monitoring of Vertical Land Motion. Sensors 2017, 17, 1753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crosetto, M.; Luzi, G.; Monserrat, O.; Barra, A.; Cuevas-González, M.; Palamá, R.; Krishnakumar, V.; Wassie, Y.; Mirmazloumi, S.M.; Espín-López, P.; et al. Deformation monitoring using SAR Interferometry and active and passive reflectors. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, 43, 287–292. [Google Scholar] [CrossRef]
- Komac, M.; Holley, R.; Mahapatra, P.; van der Marel, H.; Bavec, M. Coupling of GPS/GNSS and radar interferometric data for a 3D surface displacement monitoring of landslides. Landslides 2015, 12, 241–257. [Google Scholar] [CrossRef]
- Ferrer, P.J.; Lopez-Martinez, C.; Aguasca, A.; Pipia, L.; Gonzalez-Arbesu, J.M.; Fabregas, X.; Romeu, J. Transpolarizing Trihedral Corner Reflector Characterization Using a GB-SAR System. IEEE Geosci. Remote Sens. Lett. 2011, 8, 774–778. [Google Scholar] [CrossRef]
- Freeman, A.; Shen, Y.; Werner, C.L. Polarimetric SAR calibration experiment using active radar calibrators. IEEE Trans. Geosci. Remote Sens. 1990, 28, 224–240. [Google Scholar] [CrossRef]
- Sarabandi, K.; Oh, Y.; Ulaby, F.T. Performance characterization of polarimetric active radar calibrators and a new single antenna design. IEEE Trans. Antennas Propag. 1992, 40, 1147–1154. [Google Scholar] [CrossRef]
- Satake, M.; Fujita, M.; Hanado, H.; Horie, H.; Sato, K.; Ochiai, S. Calibration experiments of ERS-1 SAR with active radar calibrator in Japan. In Proceedings of the IGARSS ’94—1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; pp. 2209–2211. [Google Scholar] [CrossRef]
- Woode, A.; Desnos, Y.; Jackson, H. The development and first results from the ESTEC ERS-1 active radar calibration unit. IEEE Trans. Geosci. Remote Sens. 1992, 30, 1122–1130. [Google Scholar] [CrossRef]
- Hawkins, R.; Teany, L.; Srivastava, S.; Tam, S. RADARSAT precision transponder. Adv. Space Res. 1997, 19, 1455–1465. [Google Scholar] [CrossRef]
- Hounam, D.; Zwick, H.; Rabus, B. A permanent response SAR transponder for monitoring ground targets and features. In Proceedings of the 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2–5 June 2008; pp. 1–4. [Google Scholar]
- Hole, J.; Holley, R.; Giunta, G.; De Lorenzo, G.; Adam, A.M. Insar Assessment of Pipeline Stability using Compact Active Transponders. In Proceedings of the Fringe 2011 Workshop, Frascati, Italy, 19–23 September 2011. [Google Scholar]
- Mahapatra, P.S.; Samiei-Esfahany, S.; van der Marel, H.; Hanssen, R.F. On the use of transponders as coherent radar targets for SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1869–1878. [Google Scholar] [CrossRef]
- Döring, B.; Schmidt, K.; Jirousek, M.; Rudolf, D.; Reimann, J.; Raab, S.; Antony, J.; Schwerdt, M. Hierarchical bayesian data analysis in radiometric SAR system calibration: A case study on transponder calibration with RADARSAT-2 data. Remote Sens. 2013, 5, 6667–6690. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Liu, G.; Hong, J.; Ming, F.; Wang, Y. Design and Implementation of a Multi-Band Active Radar Calibrator for SAR. Remote Sens. 2019, 11, 1312. [Google Scholar] [CrossRef] [Green Version]
- Cabria, L.; García, J.Á.; Gutiérrez-Ríos, J.; Tazón, A.; Vassal’lo, J. Active Reflectors: Possible Solutions Based on Reflect arrays and Fresnel Reflectors. J. Antennas Propag. 2009, 653952. [Google Scholar] [CrossRef]
- METASENSING Radar Solucions. Available online: https://www.geomatics.metasensing.com/ecr-c (accessed on 20 January 2021).
- Brunfeldt, D.R.; Ulaby, F.T. Active reflector for radar calibration. IEEE Trans. Geosci. Remote Sens. 1984, GE-22, 165–169. [Google Scholar] [CrossRef]
- Luzi, G.; Fernandez, E.; Mirá-Perez, F.; Crosetto, M. A Low Cost Active Corner Reflector to assist Snow Monitoring through Sentinel/1 images. In Proceedings of the 14th European Conference on Antennas and Propagation (EuCAP2020), Copenhagen, Denmark, 15–20 March 2020; pp. 1–4. [Google Scholar] [CrossRef]
- EO Browser. Available online: https://apps.sentinel-hub.com/eo-browser/ (accessed on 20 January 2021).
- Devanthéry, N.; Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Crippa, B. An Approach to Persistent Scatterer Interferometry. Remote Sens. 2014, 6, 6662–6679. [Google Scholar] [CrossRef] [Green Version]
- Copernicus. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 20 January 2021).
- METEOCAT Catalan Meteorological service. Available online: https://www.meteo.cat (accessed on 20 January 2021).
- Raab, S.; Doering, B.J.; Rudolf, D.; Reimann, J.; Schwerdt, M. Analysis of an Improved Temperature Management Concept for SAR System Calibration Transponders. In Proceedings of the EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 6–9 June 2016; pp. 1–6. [Google Scholar]
- Rudolf, D.; Raab, S.; Döring, B.J.; Jirousek, M.; Reimann, J.; Schwerdt, M. Absolute Radiometric Calibration of the Novel DLR “Kalibri” Transponder. In Proceedings of the 2015 German Microwave Conference, Nuremberg, Germany, 16–18 March 2015. [Google Scholar]
- Doerry, A.W.; Brock, B.C. Radar Cross Section of Triangular Trihedral Reflector with Extended Bottom Plate 2009; SAND2009-2993; Sandia National Laboratories: Albuquerque, NM, USA, 2009. [Google Scholar]
- Jirousek, M.; Döring, B.; Rudolf, D.; Raab, S.; Schwerdt, M. Development of the highly accurate DLR Kalibri Transponder. In Proceedings of the EUSAR 2014—10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 3–5 June 2014; pp. 1–4. [Google Scholar]
- Rabb, S. Development and Implementation of an Efficient Temperature Management System for SAR System Calibration Transponders. Master’s Thesis, University of Applied Sciences Würzburg-Schweinfurt (FHWS), Bavaria, Germany, 23 May 2016. [Google Scholar]
Operating mode | Single: ascending or descending |
Polarization | One single linear co- or cross-polarization |
Radar Cross Section (RCS) | 40 dBm2 |
Antenna gain | 17 dB |
RF gain | 42 dB |
Power consumption | <0.05 A @ 12V |
Case | Acquisition Start (Date, Time) | Acquisition Stop (Date, Time) | Number of Acquisitions | Temp Range (°C) | Sampling Time Number of Frequencies |
---|---|---|---|---|---|
1 | 23.10.20 16:10:14 | 27.10.20 14:11:27 | 189 | 15–36 | 30 min/Nf = 201 (Runamb = 30 m) |
2 | 27.10.20 14:41:28 | 29.10.20 17:12:09 | 101 | 14–31.5 | 30 min/Nf = 201 (Runamb = 30 m) |
3 | 29.10.20 17:42:10 | 03.11.20 21:17:06 | 199 | 12.5–31 | 30 min/Nf = 1601 (Runamb = 240 m) |
Mean | SD | SD/Mean (%) | Max | Min |
---|---|---|---|---|
0.00706 | 0.00014 | 2 | 0.00734 | 0.00683 |
Mean (mm) | SD (mm) | Max (mm) | Min (mm) |
---|---|---|---|
−2.0 | 1.6 | 0.5 | −5.4 |
Mean (mm) | SD (mm) | Max (mm) | Min (mm) | |
---|---|---|---|---|
Uncorrected data | −2.6 | 3 | 1.9 | −7.2 |
Corrected data | −2.0 | 1.6 | 0.5 | −5.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luzi, G.; Espín-López, P.F.; Mira Pérez, F.; Monserrat, O.; Crosetto, M. A Low-Cost Active Reflector for Interferometric Monitoring Based on Sentinel-1 SAR Images. Sensors 2021, 21, 2008. https://doi.org/10.3390/s21062008
Luzi G, Espín-López PF, Mira Pérez F, Monserrat O, Crosetto M. A Low-Cost Active Reflector for Interferometric Monitoring Based on Sentinel-1 SAR Images. Sensors. 2021; 21(6):2008. https://doi.org/10.3390/s21062008
Chicago/Turabian StyleLuzi, Guido, Pedro F. Espín-López, Fermín Mira Pérez, Oriol Monserrat, and Michele Crosetto. 2021. "A Low-Cost Active Reflector for Interferometric Monitoring Based on Sentinel-1 SAR Images" Sensors 21, no. 6: 2008. https://doi.org/10.3390/s21062008
APA StyleLuzi, G., Espín-López, P. F., Mira Pérez, F., Monserrat, O., & Crosetto, M. (2021). A Low-Cost Active Reflector for Interferometric Monitoring Based on Sentinel-1 SAR Images. Sensors, 21(6), 2008. https://doi.org/10.3390/s21062008