Edge-Enhanced with Feedback Attention Network for Image Super-Resolution
Abstract
:1. Introduction
- We propose an edge enhanced feedback attention image super-resolution network (EFANSR), which comprises three stages: a dense attention super-resolution network (DASRNet), an edge detection and enhancement network (EdgeNet), and a fusion reconstruction module. The EdgeNet performs edge enhancement processing on the output image of DASRNet, and then the final SR image is obtained through the final fusion module.
- In DASRNet, we propose a spatial attention (SA) block to re-check the features and make the network pay more attention to high-frequency details and a channel attention (CA) block that can adaptively assign weights to different types of feature maps. We also apply a feedback mechanism in DASRNet. The feedback mechanism brings effective information of the latter layer back to the previous layer and adjusts the input of the network.
- We propose an EdgeNet that is more suitable for image SR. It extracts edge feature information through multiple channels and fully uses the extracted edge information to reconstruct better clarity and sharper edges.
2. Related Works
2.1. Deep Learning-Based Image Super-Resolution
2.2. Feedback Mechanism
2.3. Attention Mechanism
2.4. Edge Detection and Enhancement
3. Proposed Methods
3.1. DASRNet
3.2. Dense Spatial and Channel Attention (DSCA) Block
3.3. EdgeNet
3.4. Fusion
3.5. Loss Function
4. Discussion
5. Experimental Results
5.1. Datasets and Metrics
5.2. Training Details
5.3. Ablation Experiments
5.4. Comparison with State-of-the-Art Methods
5.5. Model Parameters
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Wu, X. An Edge-guided Image Interpolation Algorithm via Directional Filtering and Data Fusion. IEEE Trans. Image Process. 2006, 15, 2226–2238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Gao, X.; Tao, D.; Li, X. Single Image Super-Resolution with Non-Local Means and Steering Kernel Regression. IEEE Trans. Image Process. 2012, 21, 4544–4556. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Xu, Y.; Nguyen, T.Q. Single Image Super-Resolution Based on Gradient Profile Sharpness. IEEE Trans. Image Process. 2015, 24, 3187–3202. [Google Scholar] [PubMed]
- Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Lee, J.K.; Lee, K.M. Accurate Image Super-Resolution Using Very Deep Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Timofte, R.; Smet, V.D.; Gool, L.V. A+: Adjusted Anchored Neighborhood Regression for Fast Super-Resolution. In Proceedings of the Asian Conference on Computer Vision, Singapore, 1–5 November 2014; pp. 111–126. [Google Scholar]
- Dong, C.; Loy, C.C.; Tang, X. Accelerating the Super-Resolution Convolutional Neural Network. In Proceedings of the European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, 11–14 October 2016. [Google Scholar]
- Tai, Y.; Yang, J.; Liu, X.; Xu, C. MemNet: A Persistent Memory Network for Image Restoration. In Proceedings of the IEEE International Conference on Computer Vision (ICCV 2017), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017) Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar]
- Tong, T.; Li, G.; Liu, X.; Gao, Q. Image Super-Resolution Using Dense Skip Connections. In Proceedings of the IEEE International Conference on Computer Vision (ICCV 2017), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Lim, B.; Son, S.; Kim, H.; Nah, S.; Lee, K.M. Enhanced Deep Residual Networks for Single Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI, USA, 21–26 July 2017; pp. 1132–1140. [Google Scholar]
- Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.N.; Fu, Y. Residual Dense Network for Image Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018), Salt Lake City, UT, USA, 18–23 June 2018; pp. 2472–2481. [Google Scholar]
- Li, Z.; Yang, J.L.; Liu, Z.; Yang, X.; Jeon, G.; Wu, W. Feedback Network for Image Super-Resolution. In Proceedings of the IEEE IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2019), Long Beach, CA, USA, 16–20 June 2019; pp. 3862–3871. [Google Scholar]
- Zamir, A.R.; Wu, T.; Sun, L.; Shen, W.B.; Shi, B.E.; Malik, J.; Savarese, S. Feedback Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI, USA, 21–26 July 2017; pp. 1808–1817. [Google Scholar]
- Ilya, S.; Oriol, V.; Quoc, V.L. Sequence to sequence learning with neural networks. Adv. Neural Inf. Process. Syst. 2014, 27, 3104–3112. [Google Scholar]
- Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image Super-Resolution Using Very Deep Residual Channel Attention Networks. In Proceedings of the European Conference on Computer Vision (ECCV 2018), Munich, Germany, 8–14 September 2018; pp. 286–301. [Google Scholar]
- Li, J.; Fang, F.; Mei, K.; Zhang, G. Multi-scale Residual Network for Image Super-Resolution. In Proceedings of the European Conference on Computer Vision (ECCV 2018), Munich, Germany, 8–14 September 2018; pp. 517–532. [Google Scholar]
- Muqeet, A.; Iqbal, M.T.B.; Bae, S.H. HRAN: Hybrid Residual Attention Network for Single Image Super-Resolution. IEEE Access 2019, 7, 137020–137029. [Google Scholar] [CrossRef]
- Niu, Z.H.; Zhou, Y.H.; Yang, Y.B.; Fan, J.C. A Novel Attention Enhanced Dense Network for Image Super-Resolution. In Proceedings of the International Conference on Multimedia Modeling, Daejeon, Korea, 5–8 January 2020; pp. 568–580. [Google Scholar]
- Ledig, C.; Theis, L.; Huszár, F.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; Shi, W. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI, USA, 21–26 July 2017; pp. 4681–4690. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27, 2672–2680. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Liu, Y.; Cheng, M.M.; Hu, X.; Bian, J.W.; Zhang, L.; Bai, X.; Tang, J.H. Richer Convolutional Features for Edge Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 1939–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Chun, S.Y. SREdgeNet: Edge Enhanced Single Image Super-Resolution using Dense Edge Detection Network and Feature Merge Network. arXiv 2018, arXiv:1812.07174. [Google Scholar]
- Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; Loy, C.C. ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks. In Proceedings of the European Conference on Computer Vision (ECCV 2018), Munich, Germany, 8–14 September 2018; pp. 63–79. [Google Scholar]
- Ahn, N.; Kang, B.; Sohn, K.A. Fast, accurate, and lightweight super-resolution with cascading residual network. In Proceedings of the European Conference on Computer Vision (ECCV 2018), Munich, Germany, 8–14 September 2018; pp. 256–272. [Google Scholar]
- Carreira, J.; Agrawal, P.; Fragkiadaki, K.; Malik, J. Human pose estimation with iterative error feedback. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, 27–30 June 2016; pp. 4733–4742. [Google Scholar]
- Haris, M.; Shakhnarovich, G.; Ukita, N. Deep Back-Projection Networks for Super-Resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2018), Salt Lake City, UT, USA, 18–23 June 2018; pp. 1664–1673. [Google Scholar]
- Pan, Z.X.; Ma, W.; Gu, J.Y.; Lei, B. Super-Resolution of Single Remote Sensing Image Based on Residual Dense Backprojection Networks. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7918–7933. [Google Scholar] [CrossRef]
- Itti, L.; Koch, C.; Niebur, E. A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 20, 1254–1259. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Jiang, M.Q.; Qian, C.; Yang, S.; Li, C.; Zhang, H.G.; Wang, X.G.; Tang, X.O. Residual attention network for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI, USA, 21–26 July 2017; pp. 6450–6458. [Google Scholar]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 8, 679–698. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Tu, Z. Holistically-nested edge detection. In Proceedings of the IEEE International Conference on Computer Vision (ICCV 2015), Santiago, Chile, 11–18 December 2015; pp. 1395–1403. [Google Scholar]
- Shi, W.; Caballero, J.; Huszár, F.; Totz, J.; Aitken, A.P.; Bishop, R.; Rueckert, D.; Wang, Z. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Lai, W.S.; Huang, J.B.; Ahuja, N.; Yang, M.H. Fast and Accurate Image Super-Resolution with Deep Laplacian Pyramid Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 2599–2613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agustsson, E.; Timofte, R. NTIRE 2017 Challenge on Single Image Super-Resolution: Dataset and Study. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI, USA, 21–26 July 2017; pp. 1122–1131. [Google Scholar]
- Bevilacqua, M.; Roumy, A.; Guillemot, C.; Alberi-Morel, M.L. Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In Proceedings of the British Machine Vision Conference (BMVC 2012), Surrey, UK, 3–7 September 2012. [Google Scholar]
- Zeyde, R.; Elad, M.; Protter, M. On single image scale-up using sparse-representations. In Proceedings of the International Conference on Curves and Surfaces, Avignon, France, 24–30 June 2010. [Google Scholar]
- Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the IEEE International Conference on Computer Vision (ICCV 2001), Vancouver, BC, Canada, 7–14 July 2001; pp. 416–423. [Google Scholar]
- Huang, J.-B.; Singh, A.; Ahuja, N. Single image super-resolution from transformed self-exemplars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Matsui, Y.; Ito, K.; Aramaki, Y.; Fujimoto, A.; Ogawa, T.; Yamasaki, T.; Aizawa, K. Sketch-based manga retrieval using manga109 dataset. Multimed. Tools Appl. 2017, 76, 21811–31838. [Google Scholar] [CrossRef] [Green Version]
- Kingma, D.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Timofte, R.; Rothe, R.; Van Gool, L. Seven ways to improve example-based single image super-resolution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, 27–30 June 2016; pp. 1865–1873. [Google Scholar]
Model | Parameters | Set14 PSNR/SSIM | B100 PSNR/SSIM |
---|---|---|---|
N = 6 | 1.056 M | 28.33/0.7867 | 27.42/0.7409 |
N = 8 | 1.064 M | 28.40/0.7869 | 27.55/0.7410 |
N = 10 | 1.072 M | 28.31/0.7797 | 27.57/0.7412 |
Scale | Spatial Attention (SA) | Channel Attention (CA) | PSNR | SSIM |
---|---|---|---|---|
3× | × | × | 33.84 | 0.9248 |
√ | × | 33.67 | 0.9239 | |
× | √ | 33.99 | 0.9250 | |
√ | √ | 34.11 | 0.9277 |
Scale | EdgeNet | PSNR | SSIM |
---|---|---|---|
3× | × | 32.99 | 0.9125 |
√ | 34.11 | 0.9277 |
Dataset | Scale | Bicubic | A+ | SRCNN | FSRCNN | VDSR | MemNet | EDSR | SREdgeNet | SRFBN | ours |
---|---|---|---|---|---|---|---|---|---|---|---|
Set5 | 2× | 33.66/0.9299 | 36.54/0.9544 | 36.66/0.9542 | 37.00/0.9560 | 37.53/0.9587 | 37.78/0.9597 | 38.11/0.9606 | -/- | 38.11/0.9609 | 37.81/0.9509 |
3× | 30.39/0.8682 | 32.58/0.9088 | 32.75/0.9090 | 33.16/0.9139 | 33.66/0.9213 | 34.09/0.9248 | 34.65/0.9282 | -/- | 34.70/0.9292 | 34.11/0.9277 | |
4× | 28.42/0.8104 | 30.30/0.8590 | 30.48/0.8628 | 30.71/0.8660 | 31.35/0.8838 | 31.74/0.8893 | 32.46/0.8968 | 31.02/0.8920 | 32.47/0.8983 | 31.74/0.8892 | |
Set14 | 2× | 30.24/0.8688 | 32.28/0.9056 | 32.45/0.9067 | 32.63/0.9089 | 33.03/0.9124 | 33.28/0.9142 | 33.92/0.9195 | -/- | 33.82/0.9196 | 33.56/0.9202 |
3× | 27.55/0.7742 | 29.13/0.8188 | 29.30/0.8215 | 29.43/0.8242 | 29.77/0.8314 | 30.00/0.8350 | 30.52/0.8462 | -/- | 30.51/0.8461 | 29.99/0.8469 | |
4× | 26.00/0.7027 | 27.43/0.7520 | 27.50/0.7513 | 27.59/0.7549 | 28.02/0.7676 | 28.26/0.7723 | 28.80/0.7876 | 27.24/0.7800 | 28.81/0.7868 | 28.40/0.7869 | |
B100 | 2× | 29.56/0.8431 | 31.21/0.8863 | 31.36/0.8879 | 31.51/0.8920 | 31.90/0.8960 | 32.08/0.8978 | 32.32/0.9013 | -/- | 32.29/0.9100 | 31.89/0.9004 |
3× | 27.21/0.7385 | 28.29/0.7835 | 28.41/0.7863 | 28.53/0.7910 | 28.83/0.7980 | 28.96/0.8001 | 29.25/0.8093 | -/- | 29.24/0.8084 | 28.90/0.8089 | |
4× | 25.96/0.6675 | 26.82/0.7100 | 26.90/0.7101 | 26.97/0.7150 | 27.29/0.7260 | 27.40/0.7281 | 27.71/0.7420 | 27.06/0.7380 | 27.72/0.7409 | 27.55/0.7410 | |
Urban100 | 2× | 26.88/0.8403 | 29.20/0.8938 | 29.50/0.8946 | 29.87/0.9020 | 30.77/0.9140 | 31.31/0.9195 | 32.93/0.9351 | -/- | 32.62/0.9328 | 31.73/0.9326 |
3× | 24.46/0.7349 | 26.03/0.7973 | 26.24/0.7989 | 26.43/0.8080 | 27.14/0.8280 | 27.56/0.8376 | 28.80/0.8653 | -/- | 28.73/0.8641 | 28.07/0.8546 | |
4× | 23.14/0.6577 | 24.34/0.7200 | 24.52/0.7221 | 24.62/0.7280 | 25.18/0.7524 | 25.50/0.7630 | 26.64/0.8033 | 25.82/0.7910 | 26.60/0.8015 | 26.05/0.8029 | |
Manga109 | 2× | 30.80/0.9339 | -/- | 35.60/0.9663 | 36.65/0.9709 | 37.22/0.9750 | 37.72/0.9740 | 39.10/0.9773 | -/- | 39.08/0.9779 | 38.09/0.9778 |
3× | 26.95/0.8556 | -/- | 30.48/0.9117 | 31.10/0.9210 | 32.01/0.9340 | 32.51/0.9369 | 34.17/0.9476 | -/- | 34.18/0.9481 | 33.69/0.9461 | |
4× | 24.89/0.7866 | -/- | 27.58/0.8555 | 27.90/0.8610 | 28.83/0.8870 | 29.42/0.8942 | 31.02/0.9148 | -/- | 31.15/0.9160 | 30.50/0.9150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, C.; Yin, Y. Edge-Enhanced with Feedback Attention Network for Image Super-Resolution. Sensors 2021, 21, 2064. https://doi.org/10.3390/s21062064
Fu C, Yin Y. Edge-Enhanced with Feedback Attention Network for Image Super-Resolution. Sensors. 2021; 21(6):2064. https://doi.org/10.3390/s21062064
Chicago/Turabian StyleFu, Chunmei, and Yong Yin. 2021. "Edge-Enhanced with Feedback Attention Network for Image Super-Resolution" Sensors 21, no. 6: 2064. https://doi.org/10.3390/s21062064
APA StyleFu, C., & Yin, Y. (2021). Edge-Enhanced with Feedback Attention Network for Image Super-Resolution. Sensors, 21(6), 2064. https://doi.org/10.3390/s21062064