Highly Sensitive Magnesium-Doped ZnO Nanorod pH Sensors Based on Electrolyte–Insulator–Semiconductor (EIS) Sensors
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structure, Morphology, and Optical Properties of the Mg-Doped ZnO Nanorods
3.2. The Undoped ZnO and Mg-Doped ZnO Nanorod Sensing Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manjakkal, L.; Cvejin, K.; Kulawik, J.; Zaraska, K.; Szwagierczak, D.; Stojanovic, G. Sensing mechanism of RuO2–SnO2 thick film pH sensors studied by potentiometric method and electrochemical impedance spectroscopy. J. Electroanal. Chem. 2015, 759, 82–90. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, K.; Xu, D.; Yang, G.; Huang, H.; Nie, F.; Liu, C.; Yang, S. Cu Onanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 2014, 60, 208–337. [Google Scholar] [CrossRef]
- Pan, T.-M.; Huang, Y.-H.; Her, J.-L.; Lou, B.-S.; Pang, S.-T. Solution processed ZnInxOy sensing membranes on flexible PEN for extended-gate field-effect transistor pH sensors. J. Alloys Compd. 2020, 822, 153630. [Google Scholar] [CrossRef]
- Al-Hardan, N.H.; Hamid, M.A.A.; Ahmed, N.M.; Jalar, A.; Shamsudin, R.; Othman, N.K.; Keng, L.K.; Chiu, W.S.; Al-Rawi, H.N. High Sensitivity pH Sensor Based on Porous Silicon (PSi) Extended Gate Field-Effect Transistor. Sensors 2016, 16, 839. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Sutradhar, M.; Kumar, J.; Panda, S. Role of deposition and annealing of the top gate dielectric in a-IGZO TFT-based dual-gate ion-sensitive field-effect transistors. Semicond. Sci. Technol. 2016, 32, 035013. [Google Scholar] [CrossRef]
- Shaibani, P.M.; Jiang, K.; Haghighat, G.; Hassanpourfard, M.; Etayash, H.; Naicker, S.; Thundat, T. The detection of Escherichia coli (E. coli) with the pH sensitive hydrogel nanofiber-light addressable potentiometric sensor (NF-LAPS). Sens. Actuators B Chem. 2016, 226, 176–183. [Google Scholar] [CrossRef]
- Pan, T.M.; Wang, C.W.; Mondal, S.; Chang, Y.H. Effect of titanium content on the sensing and impedance characteristics of high-κ TbTixOy electrolyte-insulator-semiconductor pH sensors. J. Phys. Chem. C 2014, 118, 4501–4508. [Google Scholar] [CrossRef]
- Poghossian, A.; Schöning, M.J. Capacitive Field-Effect EIS Chemical Sensors and Biosensors: A Status Report. Sensors 2020, 20, 5639. [Google Scholar] [CrossRef]
- Chand, R.; Han, D.; Neethirajan, S.; Kim, Y.-S. Detection of protein kinase using an aptamer on a microchip integrated electrolyte-insulator-semiconductor sensor. Sens. Actuators B Chem. 2017, 248, 973–979. [Google Scholar] [CrossRef]
- Isabel, A.P.S.; Kao, C.H.; Mahanty, R.K.; Wu, Y.C.S.; Li, C.Y.; Lin, C.Y.; Lin, C.F. Sensing and structural properties of Ti-doped tin oxide (SnO2) membrane for bio-sensor applications. Ceram. Int. 2017, 43, 10386–10391. [Google Scholar] [CrossRef]
- Asif, M.H.; Nur, O.; Willander, M.; Strålfors, P.; Brännmark, C.; Elinder, F.; Englund, U.H.; Lu, J.; Hultman, L. Growth and Structure of ZnO Nanorods on a Sub-Micrometer Glass Pipette and Their Application as Intracellular Potentiometric Selective Ion Sensors. Materials 2010, 3, 4657–4667. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.-C.; Huang, B.-R.; Yang, Y.-K. IGZO nanoparticle-modified silicon nanowires as extended-gate field-effect transistor pH sensors. Sens. Actuators B Chem. 2013, 184, 27–32. [Google Scholar] [CrossRef]
- Wang, L. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode. Electrochem. Commun. 2004, 6, 225–229. [Google Scholar] [CrossRef]
- Chen, M.; Jin, Y.; Qu, X.; Jin, Q.; Zhao, J. Electrochemical impedance spectroscopy study of Ta2O5 based EIOS pH sensors in acid environment. Sens. Actuators B Chem. 2014, 192, 399–405. [Google Scholar] [CrossRef]
- Kao, C.-H.; Chang, C.L.; Su, W.M.; Chen, Y.T.; Lu, C.C.; Lee, Y.S.; Hong, C.H.; Lin, C.-Y.; Chen, H. Magnesium Oxide (MgO) pH-sensitive Sensing Membrane in Electrolyte-Insulator-Semiconductor Structures with CF4 Plasma Treatment. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.Y.; Jang, H.-J.; Cho, W.-J.; Islam, M.S. Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane. Sens. Actuators B Chem. 2012, 171–172, 238–243. [Google Scholar] [CrossRef]
- Cesar, R.R.; Barros, A.D.; Doi, I.; Diniz, J.A.; Swart, J.W. Electrolyte-Insulator-Semiconductor field effect device for pH detecting. In Proceedings of the 2014 29th Symposium on Microelectronics Technology and Devices (SBMicro), Aracaju, Brazil, 1–5 September 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Mishra, A.K.; Jarwal, D.K.; Mukherjee, B.; Kumar, A.; Ratan, S.; Jit, S. CuO Nanowire-Based Extended-Gate Field-Effect-Transistor (FET) for pH Sensing and Enzyme-Free/Receptor-Free Glucose Sensing Applications. IEEE Sens. J. 2020, 20, 5039–5047. [Google Scholar] [CrossRef]
- Al-Khalqi, E.M.; Hamid, M.A.A.; Shamsudin, R.; Al-Hardan, N.H.; Keng, L.K. The Effect of Various ZnO Layer towards Sensing Performance as an Electrolyte-Insulator-Semiconductor pH Sensor. Solid State Phenom. 2020, 307, 37–44. [Google Scholar] [CrossRef]
- Al-Khalqi, E.M.; Hamid, M.A.A.; Shamsudin, R.; Al-Hardan, N.H.; Jalar, A.; Keng, L.K. Zinc Oxide Nanorod Electrolyte–Insulator– Semiconductor Sensor for Enhanced 2-Methoxyethanol Selectivity. IEEE Sens. J. 2021, 21, 6234–6240. [Google Scholar] [CrossRef]
- Arya, S.K.; Saha, S.; Ramirez-Vick, J.E.; Gupta, V.; Bhansali, S.; Singh, S.P. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review. Anal. Chim. Acta 2012, 737, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Asif, M.H.; Danielsson, B.; Willander, M. ZnO Nanostructure-Based Intracellular Sensor. Sensors 2015, 15, 11787–11804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Hardan, N.H.; Hamid, M.A.A.; Ahmed, N.M.; Jalar, A.; Shamsudin, R.; Othman, N.K.; Keng, L.K.; Mohammed, S.M. A Study on the UV Photoresponse of Hydrothermally Grown Zinc Oxide Nanorods With Different Aspect Ratios. IEEE Sens. J. 2015, 15, 6811–6818. [Google Scholar] [CrossRef]
- Patil, N.B.; Nimbalkar, A.R.; Patil, M.G. ZnO thin film prepared by a sol-gel spin coating technique for NO2 detection. Mater. Sci. Eng. B 2018, 227, 53–60. [Google Scholar] [CrossRef]
- Thongsuksai, W.; Panomsuwan, G.; Rodchanarowan, A. Fast and convenient growth of vertically aligned ZnO nanorods via microwave plasma-assisted thermal evaporation. Mater. Lett. 2018, 224, 50–53. [Google Scholar] [CrossRef]
- Zheng, Z.; Lin, J.; Song, X.; Lin, Z. Optical properties of ZnO nanorod films prepared by CBD method. Chem. Phys. Lett. 2018, 712, 155–159. [Google Scholar] [CrossRef]
- Kao, C.H.; Chen, H.; Lee, M.L.; Liu, C.C.; Ueng, H.-Y.; Chu, Y.C.; Chen, Y.J.; Chang, K.M. Multianalyte biosensor based on pH-sensitive ZnO electrolyte–insulator–semiconductor structures. J. Appl. Phys. 2014, 115, 184701. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Liu, W.; Sun, C.; Zhang, H.; Pang, W.; Zhang, D.; Duan, X. On-chip surface modified nanostructured ZnO as functional pH sensors. Nanotechnology 2015, 26, 355202. [Google Scholar] [CrossRef]
- Young, S.-J.; Lai, L.-T.; Tang, W.-L. Improving the Performance of pH Sensors with One-Dimensional ZnO Nanostructures. IEEE Sens. J. 2019, 19, 10972–10976. [Google Scholar] [CrossRef]
- Lee, C.; Chiu, Y.; Lou, L.; Ho, S.; Chuang, C. Integrated pH Sensors and Performance Improvement Mechanism of ZnO-Based. IEEE Sens. J. 2014, 14, 490–496. [Google Scholar] [CrossRef]
- Tu, Y.; Ahmad, N.; Briscoe, J.; Zhang, D.-W.; Krause, S. Light-Addressable Potentiometric Sensors Using ZnO Nanorods as the Sensor Substrate for Bioanalytical Applications. Anal. Chem. 2018, 90, 8708–8715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, N.; Senapati, S.; Kumar, S.; Kumar, J.; Panda, S. Functionalized vertically aligned ZnO nanorods for application in electrolyte-insulator-semiconductor based pH sensors and label-free immuno-sensors. J. Phys. Conf. Ser. 2016, 704, 012013. [Google Scholar] [CrossRef]
- Lee, M.L.; Wang, J.C.; Kao, C.H.; Chen, H.; Lin, C.Y.; Chang, C.W.; Mahanty, R.K.; Lin, C.F.; Chang, K.M. Comparison of ZnO and Ti-doped ZnO sensing membrane applied in electrolyte-insulator-semiconductor structure. Ceram. Int. 2018, 44, 6081–6088. [Google Scholar] [CrossRef]
- Arshad, M.; Ansari, M.M.; Ahmed, A.S.; Tripathi, P.; Ashraf, S.; Naqvi, A.; Azam, A. Band gap engineering and enhanced photoluminescence of Mg doped ZnO nanoparticles synthesized by wet chemical route. J. Lumin. 2015, 161, 275–280. [Google Scholar] [CrossRef]
- Izyumskaya, N.; Tahira, A.; Ibupoto, Z.H.; Lewinski, N.; Avrutin, V.; Özgür, Ü.; Topsakal, E.; Willander, M.; Morkoç, H. Review—Electrochemical Biosensors Based on ZnO Nanostructures. ECS J. Solid State Sci. Technol. 2017, 6, Q84–Q100. [Google Scholar] [CrossRef]
- Dumrongrojthanath, P.; Phuruangrat, A.; Thongtem, S.; Thongtem, T. Photocatalysis of Cd-doped ZnO synthesized with precipitation method. Rare Met. 2021, 40, 537–546. [Google Scholar] [CrossRef]
- Glaspell, G.; Dutta, P.; Manivannan, A. A Room-Temperature and Microwave Synthesis of M-Doped ZnO (M=Co, Cr, Fe, Mn & Ni). J. Clust. Sci. 2005, 16, 523–536. [Google Scholar] [CrossRef]
- Chen, S.; Warwick, M.E.; Binions, R. Effects of film thickness and thermal treatment on the structural and opto-electronic properties of Ga-doped ZnO films deposited by sol–gel method. Sol. Energy Mater. Sol. Cells 2015, 137, 202–209. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, X.; Zhang, G.; Xue, H.; Ma, S. A comparative study of the microstructures and optical properties of Cu and Ag-doped ZnO thin films. Phys. B Condens. Matter 2009, 404, 3645–3649. [Google Scholar] [CrossRef]
- Azzez, S.A.; Hassan, Z.; Hassan, J.; Mukhlif, M.; Mahdi, M.S.; Bououdina, M. Effect of temperature on hydrothermally grown high-quality single-crystals Mg-doped ZnO nanorods for light-emitting diode application. J. Lumin. 2017, 192, 634–643. [Google Scholar] [CrossRef]
- Rouchdi, M.; Salmani, E.; Fares, B.; Hassanain, N.; Mzerd, A. Synthesis and characteristics of Mg doped ZnO thin films: Experimental and ab-initio study. Results Phys. 2017, 7, 620–627. [Google Scholar] [CrossRef]
- Sagheer, R.; Khalil, M.; Abbas, V.; Kayani, Z.N.; Tariq, U.; Ashraf, F. Effect of Mg doping on structural, morphological, optical and thermal properties of ZnO nanoparticles. Optik 2020, 200, 163428. [Google Scholar] [CrossRef]
- Lin, C.; Zhang, H.; Zhang, J.; Chen, C. Enhancement of the Humidity Sensing Performance in Mg-Doped Hexagonal ZnO Microspheres at Room Temperature. Sensors 2019, 19, 519. [Google Scholar] [CrossRef] [Green Version]
- Guo, N.; Wei, X.; Zhao, R.; Xu, X. Preparation and optical properties of Mg-doped ZnO nanorods. Appl. Surf. Sci. 2014, 317, 400–404. [Google Scholar] [CrossRef]
- Yousefi, R.; Zak, A.K.; Jamali-Sheini, F. Growth, X-ray peak broadening studies, and optical properties of Mg-doped ZnO nanoparticles. Mater. Sci. Semicond. Process. 2013, 16, 771–777. [Google Scholar] [CrossRef]
- Abed, C.; Bouzidi, C.; Elhouichet, H.; Gelloz, B.; Ferid, M. Mg doping induced high structural quality of sol–gel ZnO nanocrystals: Application in photocatalysis. Appl. Surf. Sci. 2015, 349, 855–863. [Google Scholar] [CrossRef]
- Boyraz, C.; Dogan, N.; Arda, L. Microstructure and magnetic behavior of (Mg/Ni) co-doped ZnO nanoparticles. Ceram. Int. 2017, 43, 15986–15991. [Google Scholar] [CrossRef]
- Al-Hardan, N.H.; Hamid, M.A.A.; Jalar, A.; Shamsudin, R.; Othman, N.K. Synthesis of Magnesium-Doped ZnO Rods via Hydrothermal Method: A Study of the Structural and Optical Properties. ECS J. Solid State Sci. Technol. 2017, 6, P571–P577. [Google Scholar] [CrossRef]
- Mallika, A.; Reddy, A.R.; Babu, K.S.; Sujatha, C.; Reddy, K.V. Structural and photoluminescence properties of Mg substituted ZnO nanoparticles. Opt. Mater. 2014, 36, 879–884. [Google Scholar] [CrossRef]
- Goktas, A.; Tumbul, A.; Aba, Z.; Durgun, M. Mg doping levels and annealing temperature induced structural, optical and electrical properties of highly c-axis oriented ZnO:Mg thin films and Al/ZnO:Mg/p-Si/Al heterojunction diode. Thin Solid Films 2019, 680, 20–30. [Google Scholar] [CrossRef]
- Hassan, J.; Mahdi, M.; Ramizy, A.; Abu Hassan, H.; Hassan, Z. Fabrication and characterization of ZnO nanorods/p-6H–SiC heterojunction LED by microwave-assisted chemical bath deposition. Superlattices Microstruct. 2013, 53, 31–38. [Google Scholar] [CrossRef]
- Sathya, M.; Pushpanathan, K. Synthesis and Optical Properties of Pb Doped ZnO Nanoparticles. Appl. Surf. Sci. 2018, 449, 346–357. [Google Scholar] [CrossRef]
- Wahab, H.; Salama, A.; El Saeid, A.; Willander, M.; Nur, O.; Battisha, I. Zinc oxide nano-rods based glucose biosensor devices fabrication. Results Phys. 2018, 9, 809–814. [Google Scholar] [CrossRef]
- Lee, Y.-M.; Zheng, M.-R. Preparation of high-aspect-ratio ZnO nanorod arrays for the detection of several organic solvents at room working temperature. Appl. Surf. Sci. 2013, 285, 241–248. [Google Scholar] [CrossRef]
- Hammad, T.M.; Salem, J.K. Synthesis and characterization of Mg-doped ZnO hollow spheres. J. Nanopart. Res. 2010, 13, 2205–2212. [Google Scholar] [CrossRef]
- Polat, I.; Yılmaz, S.; Bacaksız, E.; Atasoy, Y.; Tomakin, M. Synthesis and fabrication of Mg-doped ZnO-based dye-synthesized solar cells. J. Mater. Sci. Mater. Electron. 2014, 25, 3173–3178. [Google Scholar] [CrossRef]
- Bagnall, D.; Chen, Y.; Shen, M.; Zhu, Z.; Goto, T.; Yao, T. Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE. J. Cryst. Growth 1998, 184–185, 605–609. [Google Scholar] [CrossRef]
- Xu, L.; Li, X.; Chen, Y.; Xu, F. Structural and optical properties of ZnO thin films prepared by sol–gel method with different thickness. Appl. Surf. Sci. 2011, 257, 4031–4037. [Google Scholar] [CrossRef]
- Shi, Q.; Zhang, J.; Zhang, D.; Wang, C.; Yang, B.; Zhang, B.; Wang, W. Red luminescent and structural properties of Mg-doped ZnO phosphors prepared by sol–gel method. Mater. Sci. Eng. B 2012, 177, 689–693. [Google Scholar] [CrossRef]
- Ginting, R.T.; Yap, C.C.; Yahaya, M.; Salleh, M.M. Improvement of inverted type organic solar cells performance by incorporating Mg dopant into hydrothermally grown ZnO nanorod arrays. J. Alloys Compd. 2014, 585, 696–702. [Google Scholar] [CrossRef]
- Singh, K.; Lou, B.-S.; Her, J.-L.; Pan, T.-M. Impact of yttrium concentration on structural characteristics and pH sensing properties of sol-gel derived Y2O3 based electrolyte-insulator-semiconductor sensor. Mater. Sci. Semicond. Process. 2020, 105, 104741. [Google Scholar] [CrossRef]
- Das, B.; Garman, C. Capacitance–voltage characterization of thin film nanoporous alumina templates. Microelectron. J. 2006, 37, 695–699. [Google Scholar] [CrossRef]
- Yates, D.E.; Levine, S.; Healy, T.W. Site-binding model of the electrical double layer at the oxide/water interface. J. Chem. Soc. Faraday Trans. Phys. Chem. Condens. Phases 1974, 70, 1807–1818. [Google Scholar] [CrossRef]
- Poghossian, A.; Schöning, M.J. Silicon-Based Chemical and Biological Field-Effect Sensors. In Encyclopedia of Sensors; American Scientific Publishers: Stevenson Ranch, CA, USA, 2006; pp. 463–534. [Google Scholar]
- Van Hal, R.; Eijkel, J.C.; Bergveld, P. A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters. Sens. Actuators B Chem. 1995, 24, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Kaya, S.; Ozturk, O.; Arda, L. Roughness and bearing analysis of ZnO nanorods. Ceram. Int. 2020, 46, 15183–15196. [Google Scholar] [CrossRef]
- Lin, C.F.; Kao, C.H.; Lin, C.Y.; Liu, Y.W.; Wang, C.H. The electrical and physical characteristics of Mg-doped ZnO sensing membrane in EIS (electrolyte–insulator–semiconductor) for glucose sensing applications. Results Phys. 2020, 16, 102976. [Google Scholar] [CrossRef]
- Pan, T.-M.; Huang, M.-D.; Lin, C.-W.; Wu, M.-H. Development of high-κ HoTiO3 sensing membrane for pH detection and glucose biosensing. Sens. Actuators B Chem. 2010, 144, 139–145. [Google Scholar] [CrossRef]
- Wu, M.-H.; Lee, C.-D.; Pan, T.-M. High dielectric constant PrYxOy sensing films electrolyte-insulator-semiconductor pH-sensor for the detection of urea. Anal. Chim. Acta 2009, 651, 36–41. [Google Scholar] [CrossRef]
- Her, J.; Wu, M.; Peng, Y.; Pan, T.; Weng, W.; Pang, S. High Performance GdTixOy Electrolyte-Insulator- Semiconductor pH Sensor and Biosensor. Int. J. Electrochem. Sci. 2013, 8, 606–620. [Google Scholar]
- Lin, C.F.; Kao, C.H.; Lin, C.Y.; Chen, K.L.; Lin, Y.H. NH3 Plasma-Treated Magnesium Doped Zinc Oxide in Biomedical Sensors with Electrolyte–Insulator–Semiconductor (EIS) Structure for Urea and Glucose Applications. Nanomaterials 2020, 10, 583. [Google Scholar] [CrossRef] [Green Version]
- Bousse, L.J.; Vlekkert, H.V.D.; De Rooij, N. Hysteresis in Al2O3-gate ISFETs. Sens. Actuators B Chem. 1990, 2, 103–110. [Google Scholar] [CrossRef]
- Pan, T.-M.; Wang, C.-W.; Chen, C.-Y. Structural Properties and Sensing Performance of CeYxOy Sensing Films for Electrolyte–Insulator–Semiconductor pH Sensors. Sci. Rep. 2017, 7, 2945. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-H.; Cheng, C.-H.; Lai, C.-S.; Pan, T.-M. Structural properties and sensing performance of high-k Sm2O3 membrane-based electrolyte–insulator–semiconductor for pH and urea detection. Sens. Actuators B Chem. 2009, 138, 221–227. [Google Scholar] [CrossRef]
Sample | 2θ° | FWHM (2θo) | Crystalline Size (nm) | δ × 1014 | a (Å) | c (Å) | c/a | ε × 10−4 | I(002)/(101) |
---|---|---|---|---|---|---|---|---|---|
Undoped ZnO | 34.465 | 0.218 | 39.84 | 6.30 | 3.249 | 5.204 | 1.601 | 9.09 | 46.42 |
Mg (1%) | 34.442 | 0.207 | 41.96 | 5.67 | 3.256 | 5.207 | 1.599 | 8.63 | 18.02 |
Mg (2%) | 34.446 | 0.203 | 42.73 | 5.47 | 3.254 | 5.207 | 1.600 | 8.48 | 35.97 |
Mg (3%) | 34.431 | 0.189 | 45.78 | 4.77 | 3.253 | 5.209 | 1.601 | 7.91 | 13.68 |
Mg (4%) | 34.452 | 0.221 | 39.18 | 6.51 | 3.255 | 5.206 | 1.599 | 9.25 | 45.12 |
Mg (5%) | 34.490 | 0.241 | 36.01 | 7.71 | 3.267 | 5.200 | 1.591 | 10.1 | 52.17 |
Sample with Mg mmol:mmol | Zn (at%) | O (at%) | Mg (at%) |
---|---|---|---|
0.00 | 56.85 ± 0.26 | 43.15 ± 0.26 | 0.0 |
0.01 | 61.20 ± 2.26 | 38.70 ± 2.26 | 0.097 ± 0.01 |
0.02 | 56.58 ± 0.6 | 43.24 ± 0.66 | 0.19 ± 0.060 |
0.03 | 52.90 ± 0.71 | 46.85 ± 0.64 | 0.25 ± 0.071 |
0.04 | 54.78 ± 3.06 | 44.98 ± 2.96 | 0.25 ± 0.10 |
0.05 | 61.42 ± 3.0 | 38.32 ± 2.92 | 0.26 ± 0.13 |
Sensing Membrane | Platform | Sensitivity (mV/pH) | References |
---|---|---|---|
ZnO | EIS | 67.24 | This study |
Mg-ZnO at 1% | 68.71 | ||
Mg-ZnO at 2% | 37.74 | ||
Mg-ZnO at 3% | 83.77 | ||
Mg-ZnO at 4% | 72.55 | ||
Mg-ZnO at 5% | 38.75 | ||
ZnO | EIS | 33.15 | [27] |
ZnO (600 °C) | 42.54 | ||
ZnO | EIS | 31.20 | [33] |
ZnO (600 °C) | 40.20 | ||
Ti-doped ZnO | 41.14 | ||
Ti-doped ZnO (700 °C) | 57.56 | ||
APTES (3-aminopropyltriethoxysilane) functionalized ZnO nanorods | EIS | 50.10 | [32] |
Mg-doped ZnO | EIS | 38.32 | [67] |
Mg doped ZnO annealed at 700 °C | 59.29 | ||
ZnO | EIS | 31.20 | [71] |
ZnO + NH3 (plasma 3 min) | 47.02 | ||
Mg doped ZnO | 37.12 | ||
Mg doped ZnO + NH3 (plasma 3 min) | 53.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Khalqi, E.M.; Abdul Hamid, M.A.; Al-Hardan, N.H.; Keng, L.K. Highly Sensitive Magnesium-Doped ZnO Nanorod pH Sensors Based on Electrolyte–Insulator–Semiconductor (EIS) Sensors. Sensors 2021, 21, 2110. https://doi.org/10.3390/s21062110
Al-Khalqi EM, Abdul Hamid MA, Al-Hardan NH, Keng LK. Highly Sensitive Magnesium-Doped ZnO Nanorod pH Sensors Based on Electrolyte–Insulator–Semiconductor (EIS) Sensors. Sensors. 2021; 21(6):2110. https://doi.org/10.3390/s21062110
Chicago/Turabian StyleAl-Khalqi, Ensaf Mohammed, Muhammad Azmi Abdul Hamid, Naif H. Al-Hardan, and Lim Kar Keng. 2021. "Highly Sensitive Magnesium-Doped ZnO Nanorod pH Sensors Based on Electrolyte–Insulator–Semiconductor (EIS) Sensors" Sensors 21, no. 6: 2110. https://doi.org/10.3390/s21062110
APA StyleAl-Khalqi, E. M., Abdul Hamid, M. A., Al-Hardan, N. H., & Keng, L. K. (2021). Highly Sensitive Magnesium-Doped ZnO Nanorod pH Sensors Based on Electrolyte–Insulator–Semiconductor (EIS) Sensors. Sensors, 21(6), 2110. https://doi.org/10.3390/s21062110